Ukr.Biochem.J. 2020; Том 92, № 5, вересень-жовтень, c. 87-96

doi: https://doi.org/10.15407/ubj92.05.087

Металотіонеїни в реакції двостулкового молюска на дію ксенобіотиків

В. В. Хома1, Л. Л. Гнатишина1,2, В. В. Мартинюк1,
Т. Р. Мацьків1,2, Н. Й. Міщук1, О. Б. Столяр1*

1Тернопільський національний педагогічний університет імені Володимира Гнатюка, Україна;
2Тернопільський національний медичний університет імені І. Я. Горбачевського, Україна;
*e-mail: Oksana.Stolyar@tnpu.edu.ua

Отримано: 17 квітня 2020; Затверджено: 25 червня 2020

Оцінка чутливості клітинних тіолів металотіонеїнів (МТ) до тривалої дії екологічно реального хімічного «коктейлю» ксенобіотиків потребує дослідження з використанням корект­них моделей. Метою роботи було з’ясувати внесок МТ у відповідь двостулкового молюска на сумісну дію ксенобіотиків і підвищеної температури. Молюсків Unio tumidus Philipson, 1788 р. (Unionidae) інкубували в розчинах препаратів диклофенаку (Dc, 2 нМ), ніфедипіну (Nf, 2 нМ) та органофосфонатного гербіциду гліфосату (Gl, препарат Roundup MAX, 79 нМ) окремо та за комбінованої дії за 18°C (DcNfGl) та 25°C (DcNfGl+T) протягом 14 днів. МТ травної залози виділяли гель-розподільчою хроматографією та визначали вміст MT-Me за кількістю зв’язаного ними металу (Zn, Cu, Cd) та за концентрацією тіо­лів (MT-SH). Концентрація MT-SH у травній залозі молюсків виявилась підвищеною в усіх експозиціях. Встановлено, що у той самий час рівень MT-Me за дії Dc підвищувався, за дії Gl- вмісних розчинів  частка MT-Me знижувалась та зростало співвідношення лактат/піруват. Nf зменшував це співвідношення, збільшуючи концентрацію пірувату, та підвищував стабільність лізосомальних мембран у гемоцитах. За сумісної дії ксенобіотиків та підвищеної температури збільшувалась кількість гемоцитів із ядерними порушеннями, що свідчить про перевищення адаптаційного потенціалу організму. Багатофакторний статистичний аналіз підтвердив негативні кореляції у парах МТ-SH/МТ-Ме та МТ-SH/піруват та відокремив групи Gl і DcNfGl+T від інших груп.

Ключові слова: , , , ,


Посилання:

  1. Ebele AJ, Abdallah M, Harrad S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam. 2017;3(1):1-16. CrossRef
  2.  Holmstrup M, Bindesbøl AM, Oostingh JO, Duschl A, Scheil V, Köhler H, Loureiro S, Soares AM, Ferreira AL, Kienle C, Gerhardt A, Laskowski R, Kramarz PE, Bayley M, Svendsen C, Spurgeon DJ. Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ. 2010;408(18):3746-3762. PubMed, CrossRef
  3. Benateau S, Gaudard A, Stamm C, Altermatt F. Climate change and freshwater ecosystems: Impacts on water quality and ecological status. Hydro-CH2018 Project. Federal Office for the Environment (FOEN), Bern, Switzerland. 110 p. CrossRef
  4. Gnatyshyna L, Khoma V, Mishchuk O, Martinyuk V, Spriņģe G, Stoliar O. Multi-marker study of the responses of the Unio tumidus from the areas of small and micro hydropower plants at the Dniester River Basin, Ukraine. Environ Sci Pollut Res Int. 2020;27(10):11038-11049. PubMed, CrossRef
  5. Gnatyshyna L, Falfushynska H, Horyn O, Khoma V, Martinyuk V, Mishchuk O, Mishchuk N, Stoliar O. Biochemical responses of freshwater mussel Unio tumidus to titanium oxide nanoparticles, Bisphenol A, and their combination. Ecotoxicology. 2019;28(8):923-937.  PubMed, CrossRef
  6. Annett R, Habibi HR, Hontela A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J Appl Toxicol. 2014;34(5):458-479. PubMed, CrossRef
  7. Vystavna Y, Frkova Z, Celle-Jeanton H, Diadin D, Huneau F, Steinmann M, Crini N, Loup C. Priority substances and emerging pollutants in urban rivers in Ukraine: Occurrence, fluxes and loading to transboundary European Union watersheds. Sci Total Environ. 2018;637-638:1358-1362. PubMed, CrossRef
  8. The Top 300 of 2020. Provided by the ClinCalc DrugStats Database. Available at https://clincalc.com/DrugStats/Top300Drugs.aspx (accessed, March, 2020).
  9. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environ Sci Technol. 2002;36(6):1202-1211. PubMed, CrossRef
  10. Séguin A, Mottier A, Perron C, Lebel JM, Serpentini A, Costil K. Sub-lethal effects of a glyphosate-based commercial formulation and adjuvants on juvenile oysters (Crassostrea gigas) exposed for 35 days. Mar Pollut Bull. 2017;117(1-2):348-358. PubMed, CrossRef
  11. Viarengo A, Ponzano E, Dondero F, Fabbri R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic Molluscs. Mar Environ Res. 1997;44(1):69-84. CrossRef
  12. Nielson KB, Winge DR. Independence of the domains of metallothionein in metal binding. J Biol Chem. 1985;260(15):8698-8701. PubMed
  13. Mackay EA, Overnell J, Dunbar B, Davidson I, Hunziker PE, Kägi JH, Fothergill JE. Complete amino acid sequences of five dimeric and four monomeric forms of metallothionein from the edible mussel Mytilus edulis. Eur J Biochem. 1993;218(1):183-194. PubMed, CrossRef
  14. Gawehn K, Bergmeyer HU. D-(−)-Lactate. Methods Enzymatic Anal. 1988; 6: 588-592.
  15. Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008;3(7):1125-1131. PubMed, CrossRef
  16. Baršienė J, Andreikenaite L, Rybakovas A. Cytogenetic damage in perch (Perca fluviatilis L.) and duck mussel (Anodonta anatina L.) exposed to crude oil. Ekologija. 2006; 1: 25-31.
  17. Roesijadi G, Fowler BA. Purification of invertebrate metallothioneins. Methods Enzymol. 1991;205:263-273. PubMed, CrossRef
  18. Lee SJ, Koh JY. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol Brain. 2010;3(1):30. PubMed, PubMedCentral, CrossRef
  19. Zorita I, Strogyloudi E, Buxens A, Mazón LI, Papathanassiou E, Soto M, Cajaraville MP. Application of two SH-based methods for metallothionein determination in mussels and intercalibration of the spectrophotometric method: laboratory and field studies in the Mediterranean Sea. Biomarkers. 2005;10(5):342-359. PubMed, CrossRef
  20. Isani G, Carpenè E. Metallothioneins, unconventional proteins from unconventional animals: a long journey from nematodes to mammals. Biomolecules. 2014;4(2):435-457. PubMed, PubMedCentral, CrossRef
  21. Falfushynska H, Gnatyshyna L, Yurchak I, Sokolova I, Stoliar O. The effects of zinc nanooxide on cellular stress responses of the freshwater mussels Unio tumidus are modulated by elevated temperature and organic pollutants. Aquat Toxicol. 2015;162:82-93. PubMed, CrossRef
  22. Soudani N, Chaâbane M, Ghorbel I, Elwej A, Boudawara T, Zeghal N. Glyphosate disrupts redox status and up-regulates metallothionein I and II genes expression in the liver of adult rats. Alleviation by quercetin. Gen Physiol Biophys. 2019;38(2):123-134. PubMed, CrossRef
  23. Mesnage R, Antoniou MN. Facts and fallacies in the debate on glyphosate toxicity. Front Public Health. 2017;5:316. PubMed, PubMedCentral, CrossRef
  24. Krężel A, Maret W. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism. Int J Mol Sci. 2017;18(6):1237. PubMed, PubMedCentral, CrossRef
  25. Sun F, Dai C, Xie J, Hu X. Biochemical issues in estimation of cytosolic free NAD/NADH ratio. PLoS One. 2012;7(5):e34525. PubMed, PubMedCentral, CrossRef
  26. Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci. 2014;71(14):2577-2604. PubMed, PubMedCentral, CrossRef
  27. Bacchiocchi S, Principato G. Mitochondrial contribution to metabolic changes in the digestive gland of Mytilus galloprovincialis during anaerobiosis. J Exp Zool. 2000;286(2):107-113. PubMed, CrossRef
  28. English TE, Storey KB. Freezing and anoxia stresses induce expression of metallothionein in the foot muscle and hepatopancreas of the marine gastropod Littorina littorea. J Exp Biol. 2003;206(Pt 14):2517-2524. PubMed, CrossRef
  29. Viarengo A, Lowe D, Bolognesi C, Fabbri E, Koehler A. The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp Biochem Physiol C Toxicol Pharmacol. 2007;146(3):281-300. PubMed, CrossRef
  30. Elferink JG.  Interference of the calcium antagonists verapamil and nifedipine with lysosomal enzyme release from rabbit polymorphonuclear leukocytes. Arzneimittelforschung. 1982;32(11):1417-1420. PubMed
  31. Newton TJ, Cope WG. Biomarker responses of unionid mussels to environmental contaminants. Freshw Bivalve Ecotoxicol. 2007; 257-284. CrossRef
  32. Payton SL, Johnson PD, Jenny MJ. Comparative physiological, biochemical and molecular thermal stress response profiles for two unionid freshwater mussel species. J Exp Biol. 2016;219(Pt 22):3562-3574. PubMed, CrossRef
  33. Parolini M, Binelli A, Cogni D, Riva C, Provini A. An in vitro biomarker approach for the evaluation of the ecotoxicity of non-steroidal anti-inflammatory drugs (NSAIDs). Toxicol In Vitro. 2009;23(5):935-942. PubMed, CrossRef
  34. Fontes MK, Gusso-Choueri PK, Maranho LA, de Souza Abessa DM, Mazur WA, de Campos BG, Guimarães LL, de Toledo MS, Lebre D, Marques JR, Felicio AA, Cesar A, Almeida EA, Pereira CD. A tiered approach to assess effects of diclofenac on the brown mussel Perna perna: A contribution to characterize the hazard. Water Res. 2018;132:361-370. PubMed, CrossRef
  35. Godoy AA, Kummrow F, Pamplin PAZ. Occurrence, ecotoxicological effects and risk assessment of antihypertensive pharmaceutical residues in the aquatic environment – A review. Chemosphere. 2015;138:281-291. PubMed, CrossRef
  36. Matozzo V, Fabrello J, Masiero L, Ferraccioli F, Finos L, Pastore P, Di Gangi IM, Bogialli S. Ecotoxicological risk assessment for the herbicide glyphosate to non-target aquatic species: A case study with the mussel Mytilus galloprovincialis. Environ Pollut. 2018;233:623-632. PubMed, CrossRef
  37. Dietrich S, Ploessl F, Bracher F, Laforsch C. Single and combined toxicity of pharmaceuticals at environmentally relevant concentrations in Daphnia magna – a multigenerational study. Chemosphere. 2010;79(1):60-66. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.