Ukr.Biochem.J. 2020; Том 92, № 1, січень-лютий, c. 120-126

doi: https://doi.org/10.15407/ubj92.01.120

Цитотоксична активність кластерної сполуки ренію з β-аланіновими лігандами

К. В. Полохіна1, Д. Є. Китова1, О. В. Штеменко1, Н. І. Штеменко1,2

1Український державний хіміко-технологічний університет, Дніпро;
2Національний ТУ «Дніпровська політехніка», Україна;
e-mail: n.shtemenko@i.ua

Отримано: 25 лютого 2019; Затверджено: 29 листопада 2019

Раніше нами було показано, що кластерні сполуки ренію не лише пригнічують пухлинний ріст in vivo, але й підтримують антиоксидантний статус експериментальних тварин. Подальші дослідження впливу нових синтезованих сполук диренію(ІІІ) та кластерних сполук ренію на лейкемічні клітини людини є важливими. Метою цієї роботи було дослідити цито­токсичну активність нової кластерної сполуки ренію з β-аланіновими лігандами [Re2Cl6(C3H7NO2)2]·1.5H2O (I) у розчинах і наноліпосомах окремо та разом з цисплатином на клітинах Jurkat. Показано, що цитотоксичність І у розчині близька за значенням LC50 до цисплатину (LC50 = 2,06·10-6 M). Застосування системи реній–платина у комбінації з І показало збільшення цитотоксичності, особливо коли обидва компоненти системи знаходилися у формі змішаних ліпосом (LC50 = 4,93·10-10 M). Отже, нова сполука ренію зі структурою дикарбоксилату з цвітер–іонними лігандами має значну цитотоксичну і проапоптотичну дію в культурі лейкемічних клітин, особливо в комбінації з цис­платином, що підкреслює важливість подальшого пошуку нових активних сполук ренію та розробки нових протоколів для комбінаційної хіміотерапії на основі систем реній–платина.

Ключові слова: , , ,


Посилання:

  1. Shtemenko NI, Zabitskaya ED, Berzenina OV, Yegorova DE, Shtemenko AV. Liposomal forms of rhenium cluster compounds: enhancement of biological activity. Chem Biodivers. 2008 Aug;5(8):1660-7. PubMed, CrossRef
  2. Shtemenko AV, Collery P, Shtemenko NI, Domasevitch KV, Zabitskaya ED, Golichenko AA. Synthesis, characterization, in vivo antitumor properties of the cluster rhenium compound with GABA ligands and its synergism with cisplatin. Dalton Trans. 2009 Jul 14;(26):5132-6. PubMed, CrossRef
  3. Shtemenko NI, Chifotides HT, Domasevich KV, Golichenko AA, Babiy SA,  Li Z, Paramonova KV, Shtemenko AV, Dunbar KR. Synthesis, X-ray structure, interactions with DNA, remarkable in vivo tumor growth suppression and nephroprotective activity of cis-tetrachloro-dipivalato dirhenium(III). J Inorg  Biochem. 2013; 129:127-134. PubMed, CrossRef
  4. Shtemenko AV, Shtemenko NI. Rhenium–platinum antitumor systems. Ukr Biochem J. 2017;89(2):5-30.  CrossRef
  5. Golichenko AA, Domasevitch KV, Kytova DE, Shtemenko AV. Crystal structure of cis-bis-(μ-β-alanine-κ(2) O:O’)bis[tri-chlorido-rhenium(III)](Re-Re) sesquihydrate. Acta Crystallogr E Crystallogr Commun. 2015; 71(Pt 1):45-47. PubMed, PubMed, CrossRef
  6. Slingerland M, Guchelaar HJ, Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today. 2012;17(3–4):160-166. PubMed, CrossRef
  7. Hyodo K, Yamamoto E, Suzuki T, Kikuchi H, Asano M, Ishihara H.   Development of liposomal anticancer drugs. Biol Pharm Bull. 2013;36(5):703-7. PubMed, CrossRef
  8.  Li Z, Shtemenko NI, Yegorova DY, Babiy SO, Brown AJ, Yang T, Shtemenko AV,  Dunbar KR.  Liposomes loaded with a dirhenium compound and cisplatin: preparation, properties and improved in vivo anticancer activity. J Liposome Res. 2015;25(1):78-87. PubMed, CrossRef
  9.  Abraham RT, Weiss A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat Rev Immunol. 2004;4(4):301-308. PubMed, CrossRef
  10. Klucnikov NG. Handbook on Inorganic Synthesis. M.: Khimiia, 1965. P. 184-186. (In Russian).
  11.  Panchuk R, Skorokhyd N, Chumak V, Lehka L, Omelyanchik S, Gurinovich V, Moiseenok A, Heffeter P, Berger Wr, Stoika R. Specific antioxidant compounds differentially modulate cytotoxic activity of doxorubicin and cisplatin: in vitro and in vivo study. Croat Med J. 2014;55(3):206-17.
    PubMed, PubMed, CrossRef
  12.  Lehka LV, Panchuk RR, Berger W, Rohr Ju, Stoika RS. The role of reactive oxygen species in tumor cells apoptosis induced by landomycin A. Ukr Biochem J. 2015;87(5):72-82. PubMed, CrossRef
  13. Ramakrishnan MA. Determination of 50% endpoint titer using a simple formula. World J Virol. 2016;5(2):85-86.   PubMed, PubMed, CrossRef
  14.  Liebmann JE, Cook JA, Lipschultz C, Teague D, Fisher J, Mitchell JB. Cytotoxic studies of paclitaxel (Taxol) in human tumour cell lines. Br J Cancer. 1993;68(6):1104-1109. PubMed, PubMed, CrossRef
  15. Antunovic M, Kriznik B, Ulukaya E, Yilmaz VT, Mihalic KC, Madunic J, Marijanovic I. Cytotoxic activity of novel palladium-based compounds on leukemia cell lines. Anticancer Drugs. 2015;26(2):180-186. PubMed, CrossRef
  16. Centerwall CR,  Tacka KA, Kerwood DJ, Goodisman J, Toms BB, Dubowy RL,Dabrowiak JC. Modification and uptake of a cisplatin carbonato complex by Jurkat cells. Mol Pharmacol. 2006;70(1):348-355.  PubMed, CrossRef
  17. Sancho-Martínez SM,  Piedrafita FJ, Cannata-Andía JB, López-Novoa JM, López-Hernández FJ. Necrotic concentrations of cisplatin activate the apoptotic machinery but inhibit effector caspases and interfere with the execution of apoptosis. Toxicol Sci. 2011;122(1):73-85. PubMed, CrossRef
  18. Tacka KA, Dabrowiak JC, Goodisman J, Penefsky HS,  Souid AK. Effects of cisplatin on mitochondrial function in Jurkat cells. Chem Res Toxicol. 2004;17(8):1102-11. PubMed, CrossRef
  19. Jung Y, Lippard SJ. Direct cellular responses to platinum-induced DNA damage. Chem Rev. 2007;107(5):1387-407. PubMed, CrossRef
  20.  Shtemenko AV, Chifotides HT, Yegorova DE, Shtemenko NI, Dunbar KR. Synthesis and X-ray crystal structure of the dirhenium complex Re2(i-C3H7COO)4Cl2 and its interactions with the DNA purine nucleobases. J Inorg Biochem. 2015 Dec;153:114-120. PubMed, CrossRef
  21.  Ziai SA, Gholami O, Iranshahi M, Zamani AH, Jeddi-Tehrani M. Umbelliprenin Induces Apoptosis in CLL Cell Lines. Iran J Pharm Res. 2012;11(2):653-9. PubMed, PubMed
  22. Olivera A, Moore TW, Hu F, Brown AP, Sun A, Liotta DC, Snyder JP, Yoon Y, Shim H, Marcus AI, Miller AH, Pace TW. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): anti-inflammatory and anti-cancer properties. Int Immunopharmacol. 2012 Feb;12(2):368-77. PubMed, PubMed, CrossRef
  23. Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer. 2011 Feb 7;10:12. PubMed, PubMed, CrossRef
  24. Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta. 2010 Oct-Dec;1799(10-12):775-87. PubMed, PubMed, CrossRef
  25.  Gilmore TD, Herscovitch M. Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene. 2006 Oct 30;25(51):6887-99. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.