Ukr.Biochem.J. 2021; Том 93, № 3, травень-червень, c. 75-83

doi: https://doi.org/10.15407/ubj93.03.075

Залежні від статі особливості оксидативного стресу в серці щурів із цукровим діабетом 2-го типу

Н. І. Горбенко1*, О. Ю. Боріков2, О. В. Іванова1, Т. В. Кіприч1,
К. В. Таран1, Т. І. Гопцій2, Т. С. Литвинова1

1ДУ “Інститут проблем ендокринної патології ім. В. Я. Данилевського НАМН України”, Харків;
2Харківський національний університет імені В. Н. Каразіна, Україна;
*е-mail: Gorbenkonat58@ukr.net

Отримано: 17 вересня 2021; Затверджено: 17 травня 2021

Відомо, що цукровий діабет 2-го типу (ЦД2) вдвічі збільшує смертність від серцево-судинних захворювань (ССЗ), у розвитку яких важливу роль відіграє оксидативний стрес. Припускають, що вплив діабету на ризик ССЗ може бути різним залежно від статі. Метою дослідження було оцінити показники оксидативного стресу в серці 12-тижневих самців та самиць щурів Wistar із ЦД2, індукованим  висококалорійною дієтою з наступним введенням стрептозотоцину. Оксидативний стрес оцінювали за рівнем продуктів посиленого окислення протеїнів, активністю супероксиддисмутази, глутатіонредуктази та глутатіонпероксидази в ізольованих мітохондріях серця та за активністю NADPH-оксидази та ксантиноксидази у постмітохондріальному супернатанті. Показано, що ЦД2 спричинює виразніший оксидативний стрес, підтверджений підвищеним рівнем продуктів посиленого окислення протеїнів, у мітохондріях серця самців, ніж у мітохондріях самиць. Одержані дані вказують, що основною причиною оксидативного стресу в серці діабетичних самців є активація немітохондріальних джерел активних форм кисню, тоді як у серці діабетичних самиць – зниження активності антиоксидантних ензимів в мітохондріях. Результати досліджень підтверджують необхідність застосування гендерноспецифічної терапії для профілактики та лікування діабетичних ССЗ.

Ключові слова: , , ,


Посилання:

  1. International Diabetes Federation. IDF Diabetes Atlas. 9th ed. Brussels : [s. n.], 2019. 150 p. Available at: http://www.idf.org.
  2. Rianneke de Ritter, Marit de Jong, Rimke C. Vos, Carla J. H. van der Kallen, et al. Sex differences in the risk of vascular disease associated with diabetes. Available at: https://bsd.biomedcentral.com (accessed, January, 2020).
  3. De Paoli M, Werstuck GH. Role of Estrogen in Type 1 and Type 2 Diabetes Mellitus: A Review of Clinical and Preclinical Data. Can J Diabetes. 2020;44(5):448-452. PubMed, CrossRef
  4. Ohkuma T, Komorita Y, Peters SAE, Woodward M. Diabetes as a risk factor for heart failure in women and men: a systematic review and meta-analysis of 47 cohorts including 12 million individuals. Diabetologia. 2019;62(9):1550-1560. PubMed, PubMedCentral, CrossRef
  5. Clemens KK, Woodward M, Neal B, Zinman B. Sex Disparities in Cardiovascular Outcome Trials of Populations With Diabetes: A Systematic Review and Meta-analysis. Diabetes Care. 2020;43(5):1157-1163. PubMed, CrossRef
  6. Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ. Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med. 2019;51(12):1-13.
    PubMed, PubMedCentral, CrossRef
  7. Ritchie RH, Abel ED. Basic Mechanisms of Diabetic Heart Disease. Circ Res. 2020;126(11):1501-1525. PubMed, PubMedCentral, CrossRef
  8. Chainy GBN, Sahoo DK. Hormones and oxidative stress: an overview. Free Radic Res. 2020;54(1):1-26. PubMed, CrossRef
  9. Skovsø S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig. 2014;5(4):349-358. PubMed, PubMedCentral, CrossRef
  10. Lin S, Yang J, Wu G, Liu M, Luan X, Lv Q, Zhao H, Hu J. Preventive effect of taurine on experimental type II diabetic nephropathy. J Biomed Sci. 2010;17(Suppl 1):S46. PubMed, PubMedCentral, CrossRef
  11. Gorbenko NI, Borikov OY, Ivanova OV, Taran KV, Litvinova TS, Kiprich TV. Sex differences of carbohydrate and lipid metabolism impairment in rats with type 2 diabetes mellitus. Probl Endocrin Pathol. 2018;(2):39-45.
  12. Akinmokun A, Selby PL, Ramaiya K, Alberti KG. The short insulin tolerance test for determination of insulin sensitivity: a comparison with the euglycaemic clamp. Diabet Med. 1992;9(5):432-437. PubMed, CrossRef
  13. Di Lisa F, Menabò R, Barbato R, Siliprandi N. Contrasting effects of propionate and propionyl-L-carnitine on energy-linked processes in ischemic hearts. Am J Physiol. 1994;267(2 Pt 2):H455-H461. PubMed, CrossRef
  14. Raza H, John A. Glutathione metabolism and oxidative stress in neonatal rat tissues from streptozotocin-induced diabetic mothers. Diabetes Metab Res Rev. 2004;20(1):72-78. PubMed, CrossRef
  15. Antunes F, Han D, Cadenas E. Relative contributions of heart mitochondria glutathione peroxidase and catalase to H(2)O(2) detoxification in in vivo conditions. Free Radic Biol Med. 2002;33(9):1260-1267. PubMed, CrossRef
  16. Wang Z, Chen K, Han Y, Zhu H, Zhou X, Tan T, Zeng J, Zhang J, Liu Y, Li Y, Yao Y, Yi J, He D, Zhou J, Ma J, Zeng C. Irisin Protects Heart Against Ischemia-Reperfusion Injury Through a SOD2-Dependent Mitochondria Mechanism. J Cardiovasc Pharmacol. 2018;72(6):259-269. PubMed, PubMedCentral, CrossRef
  17. Li JM, Gall NP, Grieve DJ, Chen M, Shah AM. Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension. 2002;40(4):477-484. PubMed, CrossRef
  18. Lee MC, Velayutham M, Komatsu T, Hille R, Zweier JL. Measurement and characterization of superoxide generation from xanthine dehydrogenase: a redox-regulated pathway of radical generation in ischemic tissues. Biochemistry. 2014;53(41):6615-6623. PubMed, PubMedCentral, CrossRef
  19. Taylor EL, Armstrong KR, Perrett D, Hattersley AT, Winyard PG. Optimisation of an Advanced Oxidation Protein Products Assay: Its Application to Studies of Oxidative Stress in Diabetes Mellitus. Oxid Med Cell Longev. 2015;2015:496271.  PubMed, PubMedCentral, CrossRef
  20. Lowry OH, Rosenbrought NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275. PubMed, CrossRef
  21. Piwowar A, Knapik-Kordecka M, Warwas M. AOPP and its relations with selected markers of oxidative/antioxidative system in type 2 diabetes mellitus. Diabetes Res Clin Pract. 2007;77(2):188-192. PubMed, CrossRef
  22. Tramunt B, Smati S, Grandgeorge N, Lenfant F, Arnal JF, Montagner A, Gourdy P. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia. 2020;63(3):453-461. PubMed, PubMedCentral, CrossRef
  23. Clegg D, Hevener AL, Moreau KL, Morselli E, Criollo A, Van Pelt RE,  Vieira-Potter VJ. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors. Endocrinology. 2017;158(5):1095-1105. PubMed, PubMedCentral, CrossRef
  24. Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, Suzuki H, Toyama K, Spin JM, Tsao PS. Diabetic Cardiovascular Disease Induced by Oxidative Stress. Int J Mol Sci. 2015;16(10):25234-25263. PubMed, PubMedCentral, CrossRef
  25. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363-383. PubMed, CrossRef
  26. Brown DI, Griendling KK. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res. 2015;116(3):531-549. PubMed, PubMedCentral, CrossRef
  27. Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther. 2014;142(3):375-415. PubMed, CrossRef
  28. D’Oria R, Schipani R, Leonardini  A, Natalicchio A, Perrini S, Cignarelli A, Laviola L, Giorgino F. The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. Oxid Med Cell Longev. 2020;2020:5732956. PubMed, PubMedCentral, CrossRef
  29. Bellanti F, Matteo M, Rollo T, De Rosario F, Greco P, Vendemiale G, Serviddio G. Sex hormones modulate circulating antioxidant enzymes: impact of estrogen therapy. Redox Biol. 2013;1(1):340-346. PubMed, PubMedCentral, CrossRef
  30. Ventura-Clapier R, Piquereau J, Veksler V, Garnier A. Estrogens, Estrogen Receptors Effects on Cardiac and Skeletal Muscle Mitochondria. Front Endocrinol (Lausanne). 2019;10:557.  PubMed, PubMedCentral, CrossRef
  31. Gupte AA, Pownall HJ, Hamilton DJ. Estrogen: an emerging regulator of insulin action and mitochondrial function. J Diabetes Res. 2015;2015:916585. PubMed, PubMedCentral, CrossRef
  32. Gaede P, Vedel P, Larsen N, Jensen GVH, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348(5):383-393. PubMed, CrossRef
  33. Cameron VA, Autelitano DJ, Evans JJ, Ellmers LJ, Espiner EA, Nicholls MG, Richards AM. Adrenomedullin expression in rat uterus is correlated with plasma estradiol. Am J Physiol Endocrinol Metab. 2002;282(1):E139-E146. PubMed, CrossRef
  34. Kasai S, Shimizu S, Tatara Y, Mimura J, Itoh K. Regulation of Nrf2 by Mitochondrial Reactive Oxygen Species in Physiology and Pathology. Biomolecules. 2020;10(2):320. PubMed, PubMedCentral, CrossRef
  35. Sirker A, Zhang, Murdoch C, Shah AM. Involvement of NADPH oxidases in cardiac remodelling and heart failure. Am J Nephrol. 2007;27(6):649-660. PubMed, CrossRef
  36. Maalouf RM, Eid AA, Gorin YC, Block K, Escobar GP, Bailey S, Abboud HE. Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. Am J Physiol Cell Physiol. 2012;302(3):C597-C604. PubMed, PubMedCentral, CrossRef
  37. Kander MC, Cui Y, Liu Z. Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med. 2017;21(5):1024-1032. PubMed, PubMedCentral, CrossRef
  38. Miller AA, Drummond GR, Mast AE, Schmidt HH, Sobey CG. Effect of gender on NADPH-oxidase activity, expression, and function in the cerebral circulation: role of estrogen. Stroke. 2007;38(7):2142-2149. PubMed, CrossRef
  39. Matsumoto S, Koshiishi I, Inoguchi T, Nawata H, Utsumi H. Confirmation of superoxide generation via xanthine oxidase in streptozotocin-induced diabetic mice. Free Radic Res. 2003;37(7):767-772. PubMed, CrossRef
  40. Yang Y, Zhao J, Qiu J, Li J, Liang X, Zhang Z, Zhang X, Fu H, Korantzopoulos P, Letsas KP, Tse G, Li G, Liu T. Xanthine Oxidase Inhibitor Allopurinol Prevents Oxidative Stress-Mediated Atrial Remodeling in Alloxan-Induced Diabetes Mellitus Rabbits. J Am Heart Assoc. 2018;7(10):e008807. PubMed, PubMedCentral, CrossRef
  41. Díaz A, López-Grueso R, Gambini J, Monleón D, Mas-Bargues C, Abdelaziz KM, Viña J, Borrás C. Sex Differences in Age-Associated Type 2 Diabetes in Rats-Role of Estrogens and Oxidative Stress. Oxid Med Cell Longev. 2019;2019:6734836.  PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.