Ukr.Biochem.J. 2022; Том 94, № 1, січень-лютий, c. 75-85

doi: https://doi.org/10.15407/ubj94.01.075

Нові двоядерні комплекси ціанідів із гидроксиаміновим лігандом: Синтез, характеристика та можливості застосування

N. Korkmaz1*, Ş. A. Korkmaz2, Y. Ceylan3,
R. İmamoğlu3, A. S. Bülbül4, A. Karadağ5

1Department of Basic Sciences and Health, Hemp Institute, Yozgat Bozok University, Yozgat, Turkey;
2Department of Chemistry and Chemical Processing Technologies, Tunceli Vocational School, Munzur University, Tunceli, Turkey;
3Faculty of Science, Department of Molecular Biology and Genetics, Bartın University, Bartın, Turkey;
4Department of Biology, Faculty of Science and Arts, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey;
5Department of Chemistry, Faculty of Arts and Sciences, Yozgat Bozok University, Yozgat, Turkey;
*e-mail: nesrinokumus@gmail.com

Отримано: 14 вересня 2021; Затверджено: 21 січня 2022

Метою цієї роботи було синтезувати комплекси ціанідів [Ni(Abut)Ni(CN)4]·8H2O (C1), [Cu(Abut)2Ni(CN)4]·7H2O (C2), [Zn(Abut)Ni(CN)4]·8H2O (C3) та [Cd(Abut)Ni(CN)4]·7H2O (C4) та дослідити їх антибактеріальну та цитотоксичну дію. Одержані комплекси вивчали методом мікрохвильового синтезу з використанням ІЧ- Фур’є спектроскопії та термічного аналізу. Досліджено антибактеріальну та цитотоксічну активність синтезованих комплексів. Встановлено, що розщеплення смуг коливання ціанідогруп в ІЧ-Фур’є спектрах C1-C4 вказує на наявність кінцевих ціаногруп. Антибактеріальну активність C1-C4 вивчали на дев’яти видах грам-негативних та шести грам-позитивних бактеріях. Найбільшу антибактеріальну активність комплексів спостерігали за концентрації 1000 мкг/мл. Цитотоксичну активність оцінювали з використанням клітинної лінії HeLa та МТТ-тесту. Виявлено, що досліджувані ціанідні комплекси знижують життєздатність клітин HeLa зі значеннями IC50 14,86; 6,5; 7,2 та 19,2 мкг/мл для комплексів C1, C2, C3 та C4, відповідно.

Ключові слова: , , ,


Посилання:

  1. Dehnicke K. The Chemistry of Cyano Complexes of the Transition Metals. Organometallic Chemistry – A Series of Monographs. Von A. G. Sharpe. Academic Press, London-New York-San Francisco 1976. 1. Aufl., XI, 302 p. CrossRef
  2. Černák J, Orendáč M, Potočňák I, Chomič J, Orendáčová A, Skoršepa J, Feher A. Cyanocomplexes with one-dimensional structures: preparations, crystal structures and magnetic properties. Coord Chem Rev. 2002;224(1-2):51-66. CrossRef
  3. Korkmaz ŞA, Karadağ A, Korkmaz N, Andaç Ö, Gürbüz N, Özdemir İ, Topkaya R. Five complexes containing N N bis 2 hydroxyethyl ethylenediamine with tetracyanidopalladate II synthesis crystal structures thermal magnetic and catalytic properties. J Coordination Chem. 2013;66(17):3072-3091. CrossRef
  4. Vavra M, Potočňák I, Kajňaková M, Čižmár E, Feher A. Low-dimensional compounds containing cyano groups. XVIII. Two-dimensional network made of [Cu(tmen)]2+ moieties (tmen = tetramethylethylenediamine) connected by [Pt(CN)4]2- anions with three different bridging cyano groups. Inorg Chem Commun. 2009;12(5):396-398. CrossRef
  5. Korkmaz ŞA, Karadağ A, Aydın A, Yerli Y, Soylu MS. Binuclear cyanido complexes containing [Pt(CN)4]2−building block: Synthesis, crystal structures, magnetic properties and anticancer activities. Inorganica Chimica Acta. 2016;453:154-168. CrossRef
  6. Shi J, Lan W, Liu Q, Zhang D. Hydrogen-Bond Directed Cyanide-Bridged Supramolecular 2D and 1D Bimetallic Coordination Polymers: Synthesis, Crystal Structure, and Magnetic Properties. Russ J Gen Chem. 2018;88(2):319-324. CrossRef
  7. Qin YL, Yang BW, Wang GF, Sun H. A cyanide-bridged heterometallic coordination polymer constructed from square-planar [Ni(CN)4](2-): synthesis, crystal structure, thermal decomposition, electron paramagnetic resonance (EPR) spectrum and magnetic properties. Acta Crystallogr C Struct Chem. 2016;72(Pt 7):555-560. PubMed, CrossRef
  8. Karadaǧ A, Korkmaz ŞA, Andaç Ö, Yerli Y, Topcu Y. Cyano-complexes and salts with tetracyanonickellate II and N,N-bis(2-hydroxyethyl)-ethylenediamine: Synthesis, IR spectra, magnetic properties, thermal analyses, and crystal structures. J Coord Chem. 2012;65(10):1685-1699. CrossRef
  9. Shi J, Xue C, Kong L, Zhang D. Three 1D cyanide-bridged M(Ni, Pd, Pt)-Mn(II) Coordination Polymer: Synthesis, Crystal Structure and Magnetic Properties. Acta Chim Slov. 2017;64(1):215-220. PubMed, CrossRef
  10. Kartal Z, Şahin O, Yavuz A. The synthesis of two new Hofmann-type M(3-aminopyridine)2Ni(CN)4 [M = Zn(II) and Cd(II)] complexes and the characterization of their crystal structure by various spectroscopic methods. J Mol Struct. 2018;1171:578-586. CrossRef
  11. Korkmaz N. New sandwich-type polymeric potassium-dicyanoargentate(I) complex: synthesis, characterization and enzymatic activity. Turk J Chem. 2020;44(4):1110-1121. PubMed, PubMedCentral, CrossRef
  12. Karadaǧ A, Korkmaz N, Aydin A, Tekin Ş, Yanar Y, Yerli Y, Korkmaz ŞA. In vitro biological properties and predicted DNA-BSA interaction of three new dicyanidoargentate(I)-based complexes: synthesis and characterization. New J Chem. 2018;42(6):4679-4692. CrossRef
  13. Aydin A, Korkmaz ŞA. Six coordination compounds: mode of cytotoxic action and biological evaluation. J Turk Chem Soc. Sect A Chem. 2016;3(3):313-328. CrossRef
  14. Karaağaç D, Kürkçüoğlu GS, Şenyel M, Şahin O. Synthesis, spectroscopic, thermal and structural properties of 4-(2-aminoethyl)pyridinium tetracyanometallate(II) complexes. J Mol Struct. 2017;1136:281-287. CrossRef
  15. Kürkçüoğlu GS, Sayin E, Şahin O. Cyanide bridged hetero-metallic polymeric complexes: Syntheses, vibrational spectra, thermal analyses and crystal structures of complexes [M(1,2-dmi)2Ni(μ-CN)4]n (M = Zn(II) and Cd(II)). J Mol Struct. 2015:1101:82-90. CrossRef
  16. Kartal Z, Yavuz A. The synthesis and the spectroscopic, thermal, and structural properties of the M2[(fumarate)Ni(CN)4]·2(1,4-Dioxane) clathrate (M = Co, Ni, Cd and Hg). J Mol Struct. 2018;1155:171-183. CrossRef
  17. Tian XY, Hu AY, Yuan AH, Chen Q, Yang D, Yang FL. Syntheses, Crystal Structures, and Thermal Expansion Properties of Three-Dimensional Cyanide-Bridged Compounds Zn(4, 4′-bpy)(H2O)2M(CN)4 (4, 4′-bpy = 4, 4′-bipyridine; M = Ni, Pd, Pt). Z Anorg Allg Chem. 2015;641(12-13):2340-2343. CrossRef
  18. Gör K, Kürkçüoǧlu GS, Yeşilel O, Büyükgüngör O. Syntheses, crystal structures and spectroscopic properties of cyano-bridged two-dimensional coordination polymers with 3-methylpyridazine. Inorganica Chim Acta. 2014;414:15-20. CrossRef
  19. Solanki D, Hogarth G. Synthesis and molecular structure of [Cu(NH3)4][Ni(CN)4]: A missing piece in the [Cu(NH3)n][Ni(CN)4] story. J Mol Struct. 2015;1099:388-392. CrossRef
  20. Wong-Ng W, Culp JT, Siderius DW, Chen YS. Synthesis and synchrotron X-ray characterization of two 2D Hoffman related compounds [Ni(p-Xylylenediamine)nNi(CN)4] and [Ni(p-tetrafluoroxylylenediamine)nNi(CN)4]. Solid State Sci. 2018;81:12-18. CrossRef
  21. Jiang X, Tao B, Yu X, Wang Y, Xia H. Syntheses, crystal structures and properties of three cyano-bridged one-dimensional coordination polymers based on macrocyclic metallic tectons. RSC Adv. 2015;5:19034-19040. CrossRef
  22. Kartal Z. Vibrational Spectroscopic Investigation on Some M(Benzonitrile)2Ni(CN)4 Complexes (M = Ni, Zn, Cd, and Hg). Braz J Phys. 2012;42(1-2):6-13. CrossRef
  23. Kartal Z, Türk T. FT-IR spectroscopic and thermal study of M(1,6-hexanedithiol)Ni(CN)4⋅2(1,4-dioxane) clathrate (M = Mn, Co, Ni and Cd). J Mol Struct. 2012;1014:74-80. CrossRef
  24. Kartal Z. Synthesis, spectroscopic, thermal and structural properties of [M(3-aminopyridine)2Ni(μ-CN)2(CN)2]n (M(II)=Co and Cu) heteropolynuclear cyano-bridged complexes. Spectrochim Acta A Mol Biomol Spectrosc. 2016;152:577-583. PubMed, CrossRef
  25. Zhang M, Li BB, Sun J, Kong XP, Gu PP, Chen YY, Yuan AH. Series of two-dimensional Hofmann-DMF-type compounds M(DMF)2M’(CN)4 (M = Cd, Fe; M’ = Ni, Pd, Pt): Syntheses, structures, and thermal stabilities. Z Anorg Allg Chem. 2014;640(5):1007-1011. CrossRef
  26. Şenocak A, Karadağ A, Soylu MS, Andaç Ö. Two novel cyanido-bridged polymeric complexes with suspension bridge type connections and a series of related complex salts: Crystallographic and thermal characterizations. New J Chem. 2015;39(5):3675-3686. CrossRef
  27. Smékal Z, Adams H. Binuclear complex [Cu(bappz)(μ-NC)Ni(CN)3]·H2O (bappz = 1,4-bis(3-aminopropyl)piperazine). J Struct Chem. 2014;55(6):1111-1115. CrossRef
  28. Vafazadeh R , Dehghani-Firouzabadi A, Willis CA. Synthesis of Hetero- and Homo-multinuclear Complexes with a Tetracyanonickelate Anion: Structural Characterization [Cu(bcen)Ni(CN)4]2. Acta Chim Slov. 2017;64(3):686-691. PubMed, CrossRef
  29. Chippindale AM, Hibble SJ, Marelli E, Bilbe EJ, Hannon AC, Zbiri M. Chemistry and structure by design: ordered CuNi(CN)4 sheets with copper(ii) in a square-planar environment. Dalton Trans. 2015;44(28):12502-12506. PubMed, CrossRef
  30. Karaağaç D, Kürkçüoğlu GS, Şenyel M, Hökelek T. Syntheses, crystal structures, spectroscopic properties and thermal decompositions of one dimensional coordination polymers with 4-(2-aminoethyl)pyridine and cyanide ligands: [M(μ-4aepy)2(H2O)2][M′(CN)4] (M = Cu or Zn, M’ = Ni or Pd). J Mol Struct. 2019;1176:641-649. CrossRef
  31. Karaağaç D, Kürkçüoğlu GS. Syntheses, spectroscopic and thermal analyses of cyanide bridged heteronuclear polymeric complexes: [M(L)2Ni(CN)4]n (L=N-methylethylenediamine or N-ethylethylenediamine; M=Ni(II), Cu(II), Zn(II) or Cd(II)). J Mol Struct. 2016;1105:263-272. CrossRef
  32. Chen YY, Hu AY, Shen MQ, Tian XY, Zhou H. Syntheses and Characterization of Cyanide-Bridged Bimetallic Compounds Zn(terpy)(H2O)M(CN)4 (terpy = 2,2′:6′,2′′-ter­pyridine; M = Ni, Pd, Pt) with Linear Chains. Z Anorg Allg Chem. 2014; 640(11):2287-2291. CrossRef
  33. Hu A, Chen X, Zhou H, Chen Y, Yuan A. Syntheses, structures, and host-guest interactions of 2-D grid-type cyanide-bridged compounds [Zn(L)(H2O)2][M(CN)4]·3H2O (L = N,N′-bis(4-pyridylformamide)-1,4-benzene; M = Ni, Pd or Pt). J Coord Chem. 2013;66(18):3241-3248. CrossRef
  34. Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48(Suppl 1):5-16. PubMed, CrossRef
  35. Merritt JH, Kadouri DE, O’Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol. 2005;Chapter 1:Unit 1B.1.
    PubMed, PubMedCentral, CrossRef
  36. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, Inc. 2008. CrossRef
  37. Kartal Z, Sayin E. FTIR spectroscopic and thermal study of M(Cyclohexanethiol)2Ni(CN)4·(1,4-dioxane) clathrate (M=Mn, Co, Ni and Cd). J Mol Struct. 2011;994(1-3):170-178. CrossRef
  38. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B : Theory and Applications, 1978. CrossRef
  39. Uddin MN, Rupa TS. Thiocyanato Bridged Bimetallic Complexes (M-SCN-Co): Synthesis, Characterization and Biological Studies. Modern Chem. 2015;3(1-1):1-6. CrossRef
  40. He Y, Du Z, Ma S, Cheng S, Jiang S, Liu Y, Li D, Huang H, Zhang K, Zheng X. Biosynthesis, Antibacterial Activity and Anticancer Effects Against Prostate Cancer (PC-3) Cells of Silver Nanoparticles Using Dimocarpus Longan Lour. Peel Extract. Nanoscale Res Lett. 2016;11(1):300. PubMed, PubMedCentral, CrossRef
  41. Kongchoo S, Chainok K, Kantacha A, Wongnawa S. Copper(II) complex as a precursor for formation of cyano-bridged pentanuclear FeIII-CuII bimetallic assembly: Synthesis, characterization, crystal structure and antibacterial activity. J Chem Sci. 2017;129(4):431-440.
  42. Korkmaz N, Aydın A, Karadağ A, Yanar Y, Maaşoğlu Y, Şahin E, Tekin Ş. New bimetallic dicyanidoargentate(I)-based coordination compounds: Synthesis, characterization, biological activities and DNA-BSA binding affinities. Spectrochim Acta A Mol Biomol Spectrosc. 2017;173:1007-1022. PubMed, CrossRef
  43. Costerton JW. Introduction to biofilm. Int J Antimicrob Agents. 1999;11(3-4):217-221. PubMed, CrossRef
  44. Francolini I, Donelli G, Stoodley P. Polymer Designs to Control Biofilm Growth on Medical Devices. Rev Environ Sci Biotechnol. 2003;2:307-319. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.