Ukr.Biochem.J. 2022; Том 94, № 1, січень-лютий, c. 14-22

doi: https://doi.org/10.15407/ubj94.01.014

Спричинений депривацією глюкози розпад глікогену в мононуклеарних клітинах периферичної крові та їхня життєздатність у пацієнтів із цукровим діабетом 2 типу

K. S. Praveen Kumar1, P. Kamarthy2, S. Balakrishna1*

1Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education, Kolar, India;
2Department of General Medicine, Sri Devaraj Urs Medical College, Tamaka, Kolar, India;
*e-mail: sharath@sduu.ac.in

Отримано: 22 вересня 2021; Затверджено: 21 січня 2022

Глікогеновий шлях відіграє важливу роль у гомеостазі глюкози. Відомо, що цукровий діабет є наслідком його порушення. Метою дослідження було порівняти рівень розпаду глікогену, спричиненого глюкозною депривацією, та життєздатність мононуклеарних клітин периферичної крові (МКПК) у пацієнтів із цукровим діабетом 2-го типу (ЦД2) та в здорових осіб. Дослідження яке охоплювало 45 пацієнтів із ЦД2 та 45 здорових осіб контрольної групи. Мононуклеарні клітини виділяли з периферичної крові центрифугуванням у градієнті щільності. Депривацію глюкози спричиняли інкубацією клітин у культуральному середовищі, яке не містило 10 мМ добавки глюкози. Рівень глікогену у клітинах вимірювали фарбуванням періодичною кислотою Шиффа (PAS), розпад глікогену виражали як відсоток профарбованих клітин до/після депривації глюкози. Життєздатність клітин вимірювали за допомогою тесту з фарбуванням клітин трипановим синім. Показано, що рівень спричиненого депривацією глюкози розпаду глікогену у клітинах становив 55,4% (IQR: 50,6–61,3) у групі ЦД2 та 70,5% (IQR: 63,9–2,2) у контрольній групі, різниця між двома групами була статистично значущою (P = 0,001). Життєздатність клітин після депривації глюкози, становила 70,9% (IQR: 66,3–77,1) у групі ЦД2 та 87,8% (IQR: 83,7–90,7) у здоровій контрольній групі. Різниця між двома групами була статистично значущою (P = 0,001). Разом ці результати вказують на те, що індукована депривацією глюкози деградація глікогену в мононуклеарних клітинах периферичної крові та їхня життєздатність у пацієнтів з ЦД2 є зниженими.

Ключові слова: , , , ,


Посилання:

  1. Miwa I, Suzuki S. An improved quantitative assay of glycogen in erythrocytes. Ann Clin Biochem. 2002;39(Pt 6):612-613. PubMed, CrossRef
  2. Wiesinger H, Hamprecht B, Dringen R. Metabolic pathways for glucose in astrocytes. Glia. 1997;21(1):22-34. PubMed, CrossRef
  3. Milutinović A, Zorc-Pleskovič R. Glycogen accumulation in cardiomyocytes and cardiotoxic effects after 3NPA treatment. Bosn J Basic Med Sci. 2012;12(1):15-19. PubMed, PubMedCentral, CrossRef
  4. Tsuchitani M, Kuroda J, Nagatani M, Miura K, Katoh T, Saegusa T, Narama I, Itakura C. Glycogen accumulation in the renal tubular cells of spontaneously occurring diabetic WBN/Kob rats. J Comp Pathol. 1990;102(2):179-190. PubMed, CrossRef
  5. Brown AM, Evans RD, Black J, Ransom BR. Schwann cell glycogen selectively supports myelinated axon function. Ann Neurol. 2012;72(3):406-418. PubMed, PubMedCentral, CrossRef
  6. Ceperuelo-Mallafré V, Ejarque M, Serena C, Duran X, Montori-Grau M, Rodríguez MA, Yanes O, Núñez-Roa C, Roche K, Puthanveetil P, Garrido-Sánchez L, Saez E, Tinahones FJ, Garcia-Roves PM, Gómez-Foix AM, Saltiel AR, Vendrell J, Fernández-Veledo S. Adipose tissue glycogen accumulation is associated with obesity-linked inflammation in humans. Mol Metab. 2015;5(1):5-18. PubMed, PubMedCentral, CrossRef
  7. Krssak M, Brehm A, Bernroider E, Anderwald C, Nowotny P, Man CD, Cobelli C, Cline GW, Shulman GI, Waldhäusl W, Roden M. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes. 2004;53(12):3048-3056. PubMed, CrossRef
  8. Jensen J, Rustad PI, Kolnes AJ, Lai YC. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol. 2011;2:112. PubMed, PubMedCentral, CrossRef
  9. Vind BF, Pehmøller C, Treebak JT, Birk JB, Hey-Mogensen M, Beck-Nielsen H, Zierath JR, Wojtaszewski JFP, Højlund K. Impaired insulin-induced site-specific phosphorylation of TBC1 domain family, member 4 (TBC1D4) in skeletal muscle of type 2 diabetes patients is restored by endurance exercise-training. Diabetologia. 2011;54(1):157-167. PubMed, CrossRef
  10. van der Pouw Kraan TCTM, Chen WJ, Bunck MCM, van Raalte DH, van der Zijl NJ, van Genugten RE, van Bloemendaal L, Baggen JM, Serné EH, Diamant M, Horrevoets AJG. Metabolic changes in type 2 diabetes are reflected in peripheral blood cells, revealing aberrant cytotoxicity, a viral signature, and hypoxia inducible factor activity. BMC Med Genomics. 2015;8:20. PubMed, PubMedCentral, CrossRef
  11. Nathan AA, Tej MA, Chitiprolu M, Rangan S, Mohan V, Harish R, Anand SB, Dixit M. Impaired glucose tolerance alters functional ability of peripheral blood-derived mononuclear cells in Asian Indian men. Diab Vasc Dis Res. 2015;12(1):13-22. PubMed, CrossRef
  12. Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 Diabetes and its Impact on the Immune System. Curr Diabetes Rev. 2020;16(5):442-449. PubMed, PubMedCentral, CrossRef
  13. Shafiee G, Mohajeri-Tehrani M, Pajouhi M, Larijani B. The importance of hypoglycemia in diabetic patients. J Diabetes Metab Disord. 2012;11(1):17. PubMed, PubMedCentral, CrossRef
  14. Standards of Medical Care in Diabetes-2016: Summary of Revisions. Diabetes Care. 2016;39(Suppl 1):S4-S5. PubMed, CrossRef
  15. Pietraszek A, Gregersen S, Hermansen K. Alcohol and type 2 diabetes. A review. Nutr Metab Cardiovasc Dis. 2010;20(5):366-375. PubMed, CrossRef
  16. Sprague JE, Arbeláez AM. Glucose counterregulatory responses to hypoglycemia. Pediatr Endocrinol Rev. 2011;9(1):463-475. PubMed, PubMedCentral
  17. Jiang S, Young JL, Wang K, Qian Y, Cai L. Diabetic‑induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review). Mol Med Rep. 2020;22(2):603-611. PubMed, PubMedCentral, CrossRef
  18. Pelletier J, Bellot G, Gounon P, Lacas-Gervais S, Pouysségur J, Mazure NM. Glycogen Synthesis is Induced in Hypoxia by the Hypoxia-Inducible Factor and Promotes Cancer Cell Survival. Front Oncol. 2012;2:18. PubMed, PubMedCentral, CrossRef
  19. Indian Council of Medical Research. Guidelines for Management of Type 2 Diabetes, Available at: http://icmr.nic.in/guidelines_diabetes/guide_ diabetes.htm accessed 31 Jan 2018.
  20. Mallone R, Mannering SI, Brooks-Worrell BM, Durinovic-Belló I, Cilio CM, Wong FS, Schloot NC. Isolation and preservation of peripheral blood mononuclear cells for analysis of islet antigen-reactive T cell responses: position statement of the T-Cell Workshop Committee of the Immunology of Diabetes Society. Clin Exp Immunol. 2011;163(1):33-49. PubMed, PubMedCentral, CrossRef
  21. Tabatabaei Shafiei M, Carvajal Gonczi CM, Rahman MS, East A, François J, Darlington PJ. Detecting glycogen in peripheral blood mononuclear cells with periodic acid schiff staining. J Vis Exp. 2014;(94):52199. PubMed, PubMedCentral, CrossRef
  22. Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2001;Appendix 3:Appendix 3B. PubMed, CrossRef
  23.  IBM How to cite IBM SPSS Statistics or earlier versions of SPSS. 2014. http://www01.ibm.com/support/docview.wss?uid=swg21476197 (accessed August 31, 2014).
  24.  He J, Kelley DE. Muscle glycogen content in type 2 diabetes mellitus. Am J Physiol Endocrinol Metab. 2004;287(5):E1002-E1007. PubMed, CrossRef
  25.  Damsbo P, Vaag A, Hother-Nielsen O, Beck-Nielsen H. Reduced glycogen synthase activity in skeletal muscle from obese patients with and without type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1991;34(4):239-245. PubMed, CrossRef
  26. Ashcroft FM, Rohm M, Clark A, Brereton MF. Is Type 2 Diabetes a Glycogen Storage Disease of Pancreatic β Cells? Cell Metab. 2017;26(1):17-23. PubMed, PubMedCentral, CrossRef
  27. Cline GW, Petersen KF, Krssak M, Shen J, Hundal RS, Trajanoski Z, Inzucchi S, Dresner A, Rothman DL, Shulman GI. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med. 1999;341(4):240-246. PubMed,CrossRef
  28. Thwe PM, Pelgrom LR, Cooper R, Beauchamp S, Reisz JA, D’Alessandro A, Everts B, Amiel E. Cell-Intrinsic Glycogen Metabolism Supports Early Glycolytic Reprogramming Required for Dendritic Cell Immune Responses. Cell Metab. 2017;26(3):558-567.e5. PubMed, PubMedCentral, CrossRef
  29. Ma R, Ji T, Zhang H, Dong W, Chen X, Xu P, Chen D, Liang X, Yin X, Liu Y, Ma J, Tang K, Zhang Y, Peng Y, Lu J, Zhang Y, Qin X, Cao X, Wan Y, Huang B. A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8 + T cells. Nat Cell Biol. 2018;20(1):21-27.
    PubMed, CrossRef
  30. Ma J, Wei K, Liu J, Tang K, Zhang H, Zhu L, Chen J, Li F, Xu P, Chen J, Liu J, Fang H, Tang L, Wang D, Zeng L, Sun W, Xie J, Liu Y, Huang B. Glycogen metabolism regulates macrophage-mediated acute inflammatory responses. Nat Commun. 2020;11(1):1769. PubMed, PubMedCentral, CrossRef
  31. Daryabor G, Atashzar MR, Kabelitz D, Meri S, Kalantar K. The Effects of Type 2 Diabetes Mellitus on Organ Metabolism and the Immune System. Front Immunol. 2020;11:1582. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.