Ukr.Biochem.J. 2023; Том 95, № 2, березень-квітень, c. 93-105

doi: https://doi.org/10.15407/ubj95.02.093

Циклічні RGD-вмісні пептиди: in silico дослідження проти BCL-X(L)

A. K. Oyebamiji1*, E. T. Akintayo1,2, C. O. Akintayo1,3*,
H. O. Aworinde4, O. D. Adekunle1, S. A. Akintelu5,6*

1Industrial Chemistry Programme, Bowen University, Iwo, Osun State, Nigeria;
*e-mail: abeloyebamiji@gmail.com;
2Department of Chemistry, Ekiti State University, Ado-Ekiti, Nigeria;
3Department of Chemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria;
*e-mail: cecilia.akintayo@bowen.edu.ng;
4College of Computing and Communication Studies, Bowen University, Iwo, Nigeria;
5School of Chemistry and Chemical Engineering,
Beijing Institute of Technology, Beijing, China;
6Department of Pure and Applied Chemistry, Ladoke Akintola University
of Technology, Ogbomoso, Oyo State, Nigeria;
*e-mail: akintelusundayadewale@gmail.com

Отримано: 08 березня 2022; Виправлено: 28 квітня 2023;
Затверджено: 05 червня 2023; Доступно онлайн: 20 червня 2023

Циклічні пептиди привертають увагу можливим застосуванням у лікуванні раку. Ми перевірили здатність шести циклічних RGD-вмісних пептидів інгібувати надвелику В-клітинну лімфому (Bcl-XL) (PDB ID: 3zk6) з використанням методу in silico. Додавання електроноакцепторної групи (–Cl) до сполуки на основі циклічних RGD-вмісних пептидів спричиняло радикальне покращення міцності водневого зв’язку з Arg139 у Bcl-XL з Arg139. Було виявлено, що сполука F з -9,2 ккал/моль розташована в найкращому місці стикування в кишені зв’язування Bcl-XL і має більшу потенційну протиракову здатність, ніж інші досліджувані сполуки, а також контрольна сполука (доксорубіцин). Властивості сполуки F і доксорубіцину були досліджені за допомогою програми ADMET. Наші результати відкривають можливості для проектування та розробки бібліотеки ефективних циклічних RGD-вмісних пептидів на основі лікарських речовин як потенційних протиракових агентів.

Ключові слова: , , , , ,


Посилання:

  1. Javed I, Banzeer AA, Tariq M, Sobia K, Barkat A, Sayed SA, Ali KT. Plant-derived anticancer agents: A green anticancer approach. Asian Pac J Trop Biomed. 2017;(12): 1129-1150.
  2. He L, Gu J, Lim LY, Yuan ZX, Mo J. Nanomedicine-Mediated Therapies to Target Breast Cancer Stem Cells. Front Pharmacol. 2016;7:313. PubMed, PubMedCentral, CrossRef
  3. Qin W, Huang G, Chen Z, Zhang Y. Nanomaterials in Targeting Cancer Stem Cells for Cancer Therapy. Front Pharmacol. 2017;8:1. PubMed, PubMedCentral, CrossRef
  4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30. PubMed, CrossRef
  5. Asma ST, Acaroz U, Imre K, Morar A, Shah SRA, Hussain SZ, Arslan-Acaroz D, Demirbas H, Hajrulai-Musliu Z, Istanbullugil FR, Soleimanzadeh A, Morozov D, Zhu K, Herman V, Ayad A, Athanassiou C, Ince S. Natural Products/Bioactive Compounds as a Source of Anticancer Drugs. Cancers (Basel). 2022;14(24):6203. PubMed, PubMedCentral, CrossRef
  6. Muhammad SNH, Safuwan NAM, Yaacob NS, Fauzi AN. Regulatory Mechanism on Anti-Glycolytic and Anti-Metastatic Activities Induced by Strobilanthes crispus in Breast Cancer, In Vitro. Pharmaceuticals. 2023;16(2):153. CrossRef
  7. De la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, García-Carrancá A, Manzo-Merino J. Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches. Front Oncol. 2019;9:1143. PubMed, PubMedCentral, CrossRef
  8. Merriel SWD, Funston G, Hamilton W. Prostate Cancer in Primary Care. Adv Ther. 2018;35(9):1285-1294. PubMed, PubMedCentral, CrossRef
  9. Zelefsky MJ, Morris MJ, Eastham JA. Chapter 70: Cancer of the Prostate. In: DeVita VT, Lawrence TS, Rosenberg SA, eds. DeVita, Hellman, and Rosenberg’s Cancer: Principles and Practice of Oncology. 11th ed. Philadelphia, Pa: Lippincott Williams & Wilkins; 2019.
  10. Bokhorst LP, Bangma CH, van Leenders GJLH, Lous JJ, Moss SM, Schröder FH, Roobol MJ. Prostate-specific antigen-based prostate cancer screening: reduction of prostate cancer mortality after correction for nonattendance and contamination in the Rotterdam section of the European Randomized Study of Screening for Prostate Cancer. Eur Urol. 2014;65(2):329-336. PubMed, CrossRef
  11. Li M, Wang D, He J, Chen L, Li H. Bcl-XL: A multifunctional anti-apoptotic protein. Pharmacol Res. 2020;151:104547. PubMed, CrossRef
  12. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674. PubMed, CrossRef
  13. Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 2017;16(4):273-284. PubMed, CrossRef
  14. Opferman JT. Attacking cancer’s Achilles heel: antagonism of anti-apoptotic BCL-2 family members. FEBS J. 2016;283(14):2661-2675. PubMed, PubMedCentral, CrossRef
  15. Garner TP, Lopez A, Reyna DE, Spitz AZ, Gavathiotis E. Progress in targeting the BCL-2 family of proteins. Curr Opin Chem Biol. 2017;39:133-142. PubMed, PubMedCentral, CrossRef
  16. Chavda VP, Solanki HK, Davidson M, Apostolopoulos V, Bojarska J. Peptide-Drug Conjugates: A New Hope for Cancer Management. Molecules. 2022;27(21):7232. PubMed, PubMedCentral, CrossRef
  17. Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, New R, Parang K, Lopez OP, Parhiz H, Perera CO, Pickholz M, Remko M, Saviano M, Skwarczynski M, Tang Y, Wolf WM, Yoshiya T, Zabrocki J, Zielenkiewicz P, AlKhazindar M, Barriga V, Kelaidonis K, Sarasia EM, Toth I. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules. 2021;26(2):430. PubMed, PubMedCentral, CrossRef
  18. Apostolopoulos V, Bojarska J, Feehan J, Matsoukas J, Wolf W. Smart therapies against global pandemics: A potential of short peptides. Front Pharmacol. 2022;13:914467. PubMed, PubMedCentral, CrossRef
  19. Apostolopoulos V, Bojarska J, Chai TT, Feehan J, Kaczmarek K, Matsoukas JM, Paredes-Lopez O, Saviano M, Skwarczynski M, Smith-Carpenter J, Venanzi M, Wolf WM, Zielenkiewicz P, Ziora ZM. New Advances in Short Peptides: Looking Forward. Molecules. 2022;27(11):3635. PubMed, PubMedCentral, CrossRef
  20. Bojarska J, Mieczkowski A, Ziora ZM, Skwarczynski M, Toth I, Shalash AO, Parang K, El-Mowafi SA, Mohammed EHM, Elnagdy S, AlKhazindar M, Wolf WM. Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold. Biomolecules. 2021;11(10):1515. PubMed, PubMedCentral, CrossRef
  21. Tsuji A. Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems. NeuroRx. 2005;2(1):54-62. PubMed, PubMedCentral, CrossRef
  22. Ramadhani D, Maharani R, Gazzali AM, Muchtaridi M. Cyclic Peptides for the Treatment of Cancers: A Review. Molecules. 2022;27(14):4428. PubMed, PubMedCentral, CrossRef
  23. Qian Z, Rhodes CA, McCroskey LC, Wen J, Appiah-Kubi G, Wang DJ, Guttridge DC, Pei D. Enhancing the Cell Permeability and Metabolic Stability of Peptidyl Drugs by Reversible Bicyclization. Angew Chem Int Ed Engl. 2017;56(6):1525-1529. PubMed, PubMedCentral, CrossRef
  24. Semire B, Oyebamiji AK, Odunola OA. Tailoring of energy levels in (2Z)-2-cyano-2-[2-[(E)-2-[2-[(E)-2-(p-tolyl)vinyl]thieno[3,2-b]thiophen-5-yl]vinyl]pyran-4-ylidene]acetic acid derivatives via conjugate bridge and fluorination of acceptor units for effective D–π–A dye-sensitized solar cells: DFT–TDDFT approach. Res Chem Intermediates. 2017;43(3):1863–1879. CrossRef
  25. Lessene G, Czabotar PE, Sleebs BE, Zobel K, Lowes KN, Adams JM, Baell JB, Colman PM, Deshayes K, Fairbrother WJ, Flygare JA, Gibbons P, Kersten WJA, Kulasegaram S, Moss RM, Parisot JP, Smith BJ, Street IP, Yang H, Huang DCS, Watson KG. Structure-guided design of a selective BCL-X(L) inhibitor. Nat Chem Biol. 2013;9(6):390-397. PubMed, CrossRef
  26. Erazua EA., Oyebamiji AK, Akintelu SA, Adewole PD, Adelakun A, Adeleke BB. Quantitative Structure-Activity relationship, Molecular Docking and ADMET Screening of Tetrahydroquinoline Derivatives as Anti-Small Cell Lung Cancer Agents. Eclética Química. 2023;48(1):55-71. CrossRef
  27. Waziri I, Kelani MT, Oyedeji-Amusa MO, Oyebamiji AK, Coetzee LCC, Adeyinka AS, Muller AJ. Synthesis and computational investigation of N,N-dimethyl-4-[(Z)-(phenylimino)methyl]aniline derivatives: Biological and quantitative structural activity relationship studies. J Mol Struct. 2023;1276:134756. CrossRef
  28. Belay Y, Muller A, Ndinteh DT, Oyebamiji AK, Adeyinka AS, Fonkui TY. Synthesis, antibacterial activities, cytotoxicity, and molecular doking studies of Salicyledene derivatives. J Mol Struct. 2023;1275:134623. CrossRef
  29. Çevik UA, Celik I, Işık A, Pillai RR, Tallei TE, Yadav R, Özkay Y, Kaplancıklı ZA. Synthesis, molecular modeling, quantum mechanical calculations and ADME estimation studies of benzimidazole-oxadiazole derivatives as potent antifungal agents. J Mol Struct. 2022;1252:132095. CrossRef
  30. Radwan HA, Ahmad I, Othman IMM, Gad-Elkareem MAM, Patel H, Aouadi K, Snoussi M, Kadri A. Design, synthesis, in vitro anticancer and antimicrobial evaluation, SAR analysis, molecular docking and dynamic simulation of new pyrazoles, triazoles and pyridazines based isoxazolee. J Mol Struct. 2022;1264:133312. CrossRef
  31. Roe DR, Cheatham TE 3rd. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J Chem Theory Comput. 2013;9(7):3084-3095. PubMed, CrossRef
  32. Świsłocka R, Regulska E, Karpińska J, Świderski G, Lewandowski W. Molecular Structure and Antioxidant Properties of Alkali Metal Salts of Rosmarinic Acid. Experimental and DFT Studies. Molecules. 2019;24(14):2645. PubMed, PubMedCentral, CrossRef
  33. Cao H, Cheng WX, Li C, Pan X., Xie XG, Li TH. DFT study on the antioxidant activity of rosmarinic acid. J Mol Struct Theochem. 2005;719(1-3):177-183. CrossRef
  34. Oyebamiji AK, Akintayo ET, Semire B, Odelade KA, Adetuyi BO, Amin H, Batiha GE. Insilico Investigation on Isatin (1H-indole-2,3-dione) Derivatives as Potential Anti-tumor Necrosis Factor-Alpha. Trop J Nat Prod Res. 2022;6(11):1870-1875. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.