Ukr.Biochem.J. 2014; Том 86, №1, січень-лютий, c. 85-92

doi: http://dx.doi.org/10.15407/ubj86.01.085

Дефекти регуляторних комплексів TOR сповільнюють старіння та розвиток карбонільного/оксидативного стресу в дріжджів Sассharomyces cerevisiae

Б. В. Гомза, Р. А. Васильковська, Г. М. Семчишин

Прикарпатський національний університет імені Василя Стефаника,
Івано-Франківськ, Україна;
е-mail: semchyshyn@pu.if.ua

Сигнальний шлях TOR (target of rapamycin), вперше описаний в дріжджів Sассharomyces cerevisiae, є висококонсервативним регулятором росту клітин евкаріотів, їхнього старіння та стійкості до стресу. Досить добре вивчений вплив джерел азоту, зокрема амінокислот, на активність сигнального каскаду TOR, натомість його взаємозв’язок із вуглеводами є мало дослідженим. Метою роботи було розширення наших уявлень про потенційну роль регуляторних комплексів TOR у розвитку карбонільного/оксидативного стресу, який може бути спричинений внаслідок культивування дріжджів у присутності глюкози і фруктози. Показано, що рівень α-дикарбонільних сполук та карбонільних груп протеїнів зростає під час культивування дріжджів та є вищим у клітинах, які росли в присутності фруктози, що свідчить про їх швидше старіння та інтенсивніший розвиток карбонільного/оксидативного стресу порівняно із клітинами, які росли в присутності глюкози. Дефектні за протеїнами TOR штами, які культивували у присутності як глюкози, так і фруктози, мають нижчі показники стресу і старіння, ніж вихідний батьківський штам. Таким чином, одержані результати підтверджують зроблений раніше висновок про те, що фруктоза, порівняно із глюкозою, є потужнішим фактором  карбонільного/оксидативного стресу та прискореного старіння клітин S. cerevisiae. Проте дефекти регуляторних комплексів TOR сповільнюють старіння та розвиток стресу в дріжджів незалежно від типу вуглеводу в середовищі культивування.

Ключові слова: , , , , ,


Посилання:

  1. Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991 Aug 23;253(5022):905-9. PubMed
  2. Vézina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975 Oct;28(10):721-6. PubMed
  3. Sigal NH, Dumont FJ. Cyclosporin A, FK-506, and rapamycin: pharmacologic probes of lymphocyte signal transduction. Annu Rev Immunol. 1992;10:519-60. Review. PubMed
  4. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, Jauch KW, Geissler EK. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002 Feb;8(2):128-35. PubMed
  5. Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell. 1993 May 7;73(3):585-96. PubMed
  6. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006 Feb 10;124(3):471-84. Review. PubMed
  7. Hall MN. mTOR-what does it do? Transplant Proc. 2008 Dec;40(10 Suppl):S5-8. PubMed, CrossRef
  8.  Kapahi P., Kockel L. In book: Handbook of the Biology of Aging.  7th edition. Editors: E. J. Masoro, S. N. Austad.  2011. P. 203–213.
  9. Loewith R, Hall MN. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics. 2011 Dec;189(4):1177-201. Review. PubMed, PubMedCentral, CrossRef
  10. Cornu M, Albert V, Hall MN. mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev. 2013 Feb;23(1):53-62. Review. PubMed, CrossRef
  11.  Semchyshyn HM, Bayliak MM, Lushchak VI. In book: Biology of Starvation in Humans and Other Organisms, Editor: T. C. Merkin. 2011. P. 103–150.
  12. Helliwell SB, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R, Hall MN. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell. 1994 Jan;5(1):105-18. PubMed, PubMedCentral
  13. Helliwell SB, Howald I, Barbet N, Hall MN. TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics. 1998 Jan;148(1):99-112. PubMed, PubMedCentral
  14. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell. 2002 Sep;10(3):457-68. PubMed
  15. Martin DE, Hall MN. The expanding TOR signaling network. Curr Opin Cell Biol. 2005 Apr;17(2):158-66. Review. PubMed
  16. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94. Review. PubMed, PubMedCentral, CrossRef
  17. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012 Apr 13;149(2):274-93. Review. PubMed, PubMedCentral, CrossRef
  18. Wedaman KP, Reinke A, Anderson S, Yates J 3rd, McCaffery JM, Powers T. Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol Biol Cell. 2003 Mar;14(3):1204-20. PubMed, PubMedCentral
  19. Shimobayashi M, Oppliger W, Moes S, Jenö P, Hall MN. TORC1-regulated protein kinase Npr1 phosphorylates Orm to stimulate complex sphingolipid synthesis. Mol Biol Cell. 2013 Mar;24(6):870-81. PubMed, PubMedCentral, CrossRef
  20.  Loewith R., Hall M. N.. In book: Cell Growth: Control of Cell Size, Editors: M. N. Hall, M. Raff, and G. Thomas. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Loewith R. E. 2004.  P. 139–166.
  21. Xiao L, Grove A. Coordination of Ribosomal Protein and Ribosomal RNA Gene Expression in Response to TOR Signaling. Curr Genomics. 2009 May;10(3):198-205. PubMed, PubMedCentral, CrossRef
  22. Crespo JL, Hall MN. Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2002 Dec;66(4):579-91, table of contents. Review.  PubMed, PubMedCentral
  23. Bentzinger CF, Lin S, Romanino K, Castets P, Guridi M, Summermatter S, Handschin C, Tintignac LA, Hall MN, Rüegg MA. Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy. Skelet Muscle. 2013 Mar 6;3(1):6. PubMed, PubMedCentral, CrossRef
  24. Efeyan A, Zoncu R, Sabatini DM. Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med. 2012 Sep;18(9):524-33. Review. PubMed, PubMedCentral, CrossRef
  25. Ljungdahl PO, Daignan-Fornier B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics. 2012 Mar;190(3):885-929. PubMed, PubMedCentral, CrossRef
  26. Semchyshyn HM, Lozinska LM, Miedzobrodzki J, Lushchak VI. Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in Saccharomyces cerevisiae cells. Carbohydr Res. 2011 May 15;346(7):933-8. PubMed, CrossRef
  27. Lozinska LМ, Semchyshyn HМ. Fructose as a factor of carbonyl and oxidative stress development and accelerated aging in the yeast Saccharomyces cerevisiae. Ukr Biokhim Zhurn. 2011 Jul-Sep;83(4):67–76. PubMed
  28. Semchyshyn HM, Lozinska LM. Fructose protects baker’s yeast against peroxide stress: potential role of catalase and superoxide dismutase. FEMS Yeast Res. 2012 Nov;12(7):761-73. PubMed, CrossRef
  29. Hipkiss AR. Energy metabolism, proteotoxic stress and age-related dysfunction – protection by carnosine. Mol Aspects Med. 2011 Aug;32(4-6):267-78. Review. PubMed, CrossRef
  30. Lozinska LМ, Semchyshyn HМ. Biological aspects of nonenzymatic glycosylation. Ukr Biokhim Zhurn. 2012 Sep-Oct;84(5):16-37. PubMed
  31. Schmidt A, Kunz J, Hall MN. TOR2 is required for organization of the actin cytoskeleton in yeast. Proc Natl Acad Sci USA. 1996 Nov 26;93(24):13780-5. PubMed, PubMedCentral, CrossRef
  32. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54. PubMed, CrossRef
  33. Busti S, Coccetti P, Alberghina L, Vanoni M. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. Sensors (Basel). 2010;10(6):6195-240. Review. PubMed, PubMedCentral, CrossRef
  34. Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW, Thomas EL, Kockel L. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 2010 Jun 9;11(6):453-65. Review. PubMed, PubMedCentral, CrossRef
  35. Evans DS, Kapahi P, Hsueh WC, Kockel L. TOR signaling never gets old: aging, longevity and TORC1 activity. Ageing Res Rev. 2011 Apr;10(2):225-37. Review. PubMed, PubMedCentral, CrossRef
  36. Lushchak VI. Budding yeast Saccharomyces cerevisiae as a model to study oxidative modification of proteins in eukaryotes. Acta Biochim Pol. 2006;53(4):679-84. Review. PubMed
  37. Lushchak VI. Free radical oxidation of proteins and its relationship with functional state of organisms. Biochemistry (Mosc). 2007 Aug;72(8):809-27. Review. PubMed, CrossRef
  38. Lushchak VI, Gospodaryov DV. Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae. Cell Biol Int. 2005 Mar;29(3):187-92. PubMed, CrossRef
  39. Lushchak VI. Oxidative stress in yeast. Biochemistry (Mosc). 2010 Mar;75(3):281-96. Review. PubMed, CrossRef
  40. Partridge L. The new biology of ageing. Philos Trans R Soc Lond B Biol Sci. 2010 Jan 12;365(1537):147-54. PubMed, PubMedCentral, CrossRef
  41. Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab. 2007 Apr;5(4):265-77. PubMed, PubMedCentral, CrossRef
  42. Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK. The TOR pathway comes of age. Biochim Biophys Acta. 2009 Oct;1790(10):1067-74. Review. PubMed, PubMedCentral, CrossRef
  43. Madeo F, Eisenberg T, Büttner S, Ruckenstuhl C, Kroemer G. Spermidine: a novel autophagy inducer and longevity elixir. Autophagy. 2010 Jan;6(1):160-2. Review. PubMed, CrossRef
  44. Morselli E, Mariño G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, Cabrera S, Bénit P, Rustin P, Criollo A, Kepp O, Galluzzi L, Shen S, Malik SA, Maiuri MC, Horio Y, López-Otín C, Andersen JS, Tavernarakis N, Madeo F, Kroemer G. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol. 2011 Feb 21;192(4):615-29. PubMed, PubMedCentral, CrossRef
  45. Pan Y, Schroeder EA, Ocampo A, Barrientos A, Shadel GS. Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab. 2011 Jun 8;13(6):668-78. PubMed, PubMedCentral, CrossRef
  46. Pan Y. Mitochondria, reactive oxygen species, and chronological aging: a message from yeast. Exp Gerontol. 2011 Nov;46(11):847-52. Review. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.