Ukr.Biochem.J. 2014; Том 86, №2, березень-квітень, c. 26-40

doi: http://dx.doi.org/10.15407/ubj86.02.026

Вплив активатора АТР-залежного K(+)-каналу на трансмембранний обмін калію і утворення активних форм кисню в умовах відкривання мітохондріальної пори

О. В. Акопова, Л. І. Колчинська, В. І. Носар, В. А. Бурий, І. М. Маньковська, В. Ф. Сагач

Інститут фізіології ім. О. О. Богомольця НАН України, Київ;
e-mail: a-dubensky@mail.ru

Досліджено вплив активатора мітохондріального АТР-залежного K+-каналу (K+ATP-каналу) діазоксиду (DZ) на трансмембранний обмін K+ в мітохондріях печінки щурів і утворення активних форм кисню (АФК) в умовах відкривання мітохондріальної пори (mitochondrial permeability transition pore, MPTP). Встановлено, що за дії DZ відбувається активація K+-циклу (входу K+ та K++-обміну) з максимальним ефектом в області ≤500 нМ DZ. Показано, що відкривання МРТР також призводить до активації K+-циклу у разі одночасної активації циклічного транспорту Са2+. За відсутності деполяризації Са2+-цикл підтримується роботою МРТР і Са2+-уніпортера. Активація K+-циклу під час відкривання МРТР обумовлена стимуляцією K++-обміну, однак подальше прискорення K++-обміну під дією DZ призводить до інгібування МРТР. Показано також, що DZ знижує швидкість утворення АФК під час відкривання МРТР в мітохондріях печінки. Дійшли висновку, що зменшення продукції АФК, як і активація K++-обміну, є складовими комплексного механізму інгібування МРТР під дією активатора K+ATP-канала.

Ключові слова: , , , , ,


Посилання:

  1. Inoue I, Nagase H, Kishi K, Higuti T. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature. 1991 Jul 18;352(6332):244-7. PubMed, CrossRef
  2. Oldenburg O, Cohen MV, Yellon DM, Downey JM. Mitochondrial K(ATP) channels: role in cardioprotection. Cardiovasc Res. 2002 Aug 15;55(3):429-37. Review. PubMed, CrossRef
  3. O’Rourke B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res. 2004;94(4):420–432. PubMed, PubMedCentral, CrossRef
  4. Szewczyk A, Jarmuszkiewicz W, Kunz WS. Mitochondrial potassium channels. IUBMB Life. 2009 Feb;61(2):134-43. Review. PubMed, CrossRef
  5. Garlid KD, Paucek P. Mitochondrial potassium transport: the K(+) cycle. Biochim Biophys Acta. 2003 Sep 30;1606(1-3):23-41. Review. PubMed, CrossRef
  6. Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD. Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria. Am J Physiol Heart Circ Physiol. 2001 Feb;280(2):H649-57. PubMed
  7. Cancherini DV, Trabuco LG, Rebouças NA, Kowaltowski AJ. ATP-sensitive K+ channels in renal mitochondria. Am J Physiol Renal Physiol. 2003 Dec;285(6):F1291-6. PubMed, CrossRef
  8. Akopova OV, Nosar VI, Bouryi VA, Mankovskaya IN, Sagach VF. Influence of ATP-dependent K(+)-channel opener on K(+)-cycle and oxygen consumption in rat liver mitochondria. Biochemistry (Mosc). 2010 Sep;75(9):1139-47. PubMed, CrossRef
  9. Murata M, Akao M, O’Rourke B, Marban E. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca2+ overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res. 2001;89(10):891-898. PubMed, CrossRef
  10. Kopustinskiene DM, Liobikas J, Skemiene K, Malinauskas F, Toleikis A. Direct effects of K(ATP) channel openers pinacidil and diazoxide on oxidative phosphorylation of mitochondria in situ. Cell Physiol Biochem. 2010;25(2-3):181-6. PubMed, CrossRef
  11. Akopova OV, Nosar’VI, Bury VA, Kolchinskaia LI, Mankovskaia IN, Sagach VF. The effect of ATP-dependent K(+)-channel opener on the functional state and the opening of cyclosporine-sensitive pore in rat liver mitochondria. Ukr Biokhim Zhurn. 2013 May-Jun;85(3):38-51. Russian. PubMed, CrossRef
  12. Facundo HT, de Paula JG, Kowaltowski AJ. Mitochondrial ATP-sensitive K+ channels prevent oxidative stress, permeability transition and cell death. J Bioenerg Biomembr. 2005 Apr;37(2):75-82. PubMed, CrossRef
  13. Andrukhiv A, Costa AD, West IC, Garlid KD. Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol. 2006 Nov;291(5):H2067-74. PubMed, CrossRef
  14. Mironova GD, Kachaeeva EV, Krylova IB, Rodionova OM, Balina MI, Evdokimova NR, Sapronov NS. Mitochondrial ATP-dependent potassium channel. 2. The role of the channel in protection of the heart against ischemia. Vestn Ross Akad Med Nauk. 2007;(2):44-50. Russian. PubMed
  15. Costa AD, Garlid KD. Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT. Am J Physiol Heart Circ Physiol. 2008 Aug;295(2):H874-82. PubMed, PubMedCentral, CrossRef
  16. Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med. 2000 May;6(5):513-9. Review. PubMed
  17. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta. 2006 May-Jun;1757(5-6):509-17. Review. PubMed, CrossRef
  18. Ferranti R, da Silva MM, Kowaltowski AJ. Mitochondrial ATP-sensitive K+ channel opening decreases reactive oxygen species generation. FEBS Lett. 2003 Feb 11;536(1-3):51-5. PubMed, CrossRef
  19. Miwa S, Brand MD. Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochem Soc Trans. 2003 Dec;31(pt 6):1300–1301. PubMed, CrossRef
  20. Comelli M, Metelli G, Mavelli I. Downmodulation of mitochondrial F0F1 ATP synthase by diazoxide in cardiac myoblasts: a dual effect of the drug. Am J Physiol Heart Circ Physiol. 2007 Feb;292(2):H820-9. PubMed, CrossRef
  21. Akopova OV. The influence of ATP-dependent K(+)-channel diazoxide opener on the opening of mitochondrial permeability transition pore in rat liver mitochondria. Ukr Biokhim Zhurn. 2011 May-Jun;83(3):37-47. Russian. PubMed
  22. Akerman KE, Wikström MK. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 1976 Oct 1;68(2):191-7. PubMedCrossRef
  23. Jung DW, Davis MH, Brierley GP. Estimation of matrix pH in isolated heart mitochondria using a fluorescent probe. Anal Biochem. 1989 May 1;178(2):348-54. PubMed, CrossRef
  24. Tedeschi H. The structure of the mitochondrial membrane: inferences from permeability properties. J Biophys Biochem Cytol. 1959 Oct;6(2):241-52. PubMed, PubMedCentral, CrossRef
  25. Garlid KD, Paucek P, Yarov-Yarovoy V, Sun X, Schindler PA. The mitochondrial KATP channel as a receptor for potassium channel openers. J Biol Chem. 1996 Apr 12;271(15):8796-9. PubMed, CrossRef
  26. Massari S, Azzone GF. The mechanism of ion translocation in mitochondria. 1. Coupling of K+ and H+ fluxes. Eur J Biochem. 1970 Feb;12(2):301-9. PubMed, CrossRef
  27. Brown GC. The leaks and slips of bioenergetic membranes. FASEB J. 1992 Aug;6(11):2961-5. Review. PubMed
  28. Akopova OV. The role of mitochondrial permeability transition pore in transmembrane Ca2+-exchange in mitochondria. Ukr Biokhim Zhurn. 2008 May-Jun;80(3):40-7. Ukrainian.  PubMed
  29. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009 Jan 1;417(1):1-13. Review. PubMed, PubMedCentral, CrossRef
  30. Rottenberg H. Non-equilibrium thermodynamics of energy conversion in bioenergetics. Biochim Biophys Acta. 1979 Dec 13;549(3-4):225-53. Review. PubMed, CrossRef
  31. Lambert AJ, Brand MD. Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem. 2004 Sep 17;279(38):39414-20. PubMed, CrossRef
  32. Liu SS. Cooperation of a “reactive oxygen cycle” with the Q cycle and the proton cycle in the respiratory chain–superoxide generating and cycling mechanisms in mitochondria. J Bioenerg Biomembr. 1999 Aug;31(4):367-76. Review. PubMed
  33. Solodovnikova IM, Iurkov VI, Ton’shin AA, Iaguzhinskiy LS. Local coupling of respiration processes and phosphorylation in rat liver mitochondria. Biofizika. 2004 Jan-Feb;49(1):47-56. Russian. PubMed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.