Ukr.Biochem.J. 2014; Том 86, №6, листопад-грудень, c. 154-166

doi: http://dx.doi.org/10.15407/ubj86.06.154

Захисний вплив тіакалікс[4]арен-тетрасульфонату на інгібування АТР-гідролазної активності субфрагмента-1 міозину міометрія катіонами важких металів

Р. Д. Лабинцева1, О. В. Бевза1, А. А. Бевза1, А. О. Люлько1,
С. Г. Харченко2, В. І. Кальченко2, С. О. Костерін1

1Інститут біохімії ім. О. В. Палладіна НАН України, Київ;
е-mail: labyntseva@biochem.kiev.ua; kinet@biochem.kiev.ua;
2Інститут органічної хімії НАН України, Київ;
е-mail: vik@ioch.kiev.ua

Важкі метали негативно впливають на скоротливі властивості гладенького м’яза матки, що часто стає причиною різноманітних патологій репродуктивної системи у жінок. У зв’язку з цим виникає потреба в розробленні ефективних методів корекції порушень скоротливої активності міометрія. Гідроліз ATP, каталізований міозиновою АТРазою, є одним із найважливіших елементів молекулярного механізму скорочення міометрія. Нами встановлена інгібувальна дія 0,03–0,3 мМ Ni2+, Pb2+ та Cd2+ на ензиматичний гідроліз АТР, що здійснюється за участю субфрагмента-1 міозину, одержаного із гладенького м’яза матки свині. Тіакалікс[4]арен-тетрасульфонат (С-798) у концентрації 100 мкМ відновлює до контрольного рівня АТРазну активність субфрагмента-1 міозину у присутності катіонів важких металів. Найвірогідніше із припущень щодо механізму корегувальної дії С-798 ґрунтується на здатності цієї сполуки хелатувати важкі метали, а саме вилучати катіони Pb, Cd та Ni із середовища інкубації. Методом комп’ютерного моделювання було продемонстровано, що захисний вплив С-798 може бути також наслідком послаблення взаємодії катіонів важких металів з амінокислотними залишками молекули міозину поблизу активного центру АТР-гідролази. Таким чином, отримані результати можуть бути використані в подальших дослідженнях, спрямованих на оцінку перспективності тіакалікс[4]арен-тетрасульфонату як фармакологічної сполуки.

Ключові слова: , , , , , , ,


Посилання:

  1. Paran’ko NM, Belitskaia EN, Zemliakova TD, Shmatkov GG, Rublevskaia NI, Chub LE, Golovkova TA. Contribution of heavy metals to the development of reproductive disorders. Gig Sanit. 2002 Jan-Feb;(1):28-30. Russian. PubMed
  2. Serduk AM, Belitskaya EN, Paranko N, Shmatko GG. Heavy metals external environment and their impact on the reproductive function of women. Dnepropetrovsk: ART Press, 2004. 148 p. (In Russian).
  3. Dorea JG, Donangelo CM. Early (in uterus and infant) exposure to mercury and lead. Clin Nutr. 2006 Jun;25(3):369-76. Review. PubMed, CrossRef
  4. Bellinger DC, Burger J, Cade TJ, Cory-Slechta DA, Finkelstein M, Hu H, Kosnett M, Landrigan PJ, Lanphear B, Pokras MA, Redig PT, Rideout BA, Silbergeld E, Wright R, Smith DR. Health risks from lead-based ammunition in the environment. Environ Health Perspect. 2013 Jun;121(6):A178-9. PubMed, PubMedCentral, CrossRef
  5. Bires J, Maracek I, Bartko P, Biresova M, Weissova T. Accumulation of trace elements in sheep and the effects upon qualitative and quantitative ovarian changes. Vet Hum Toxicol. 1995 Aug;37(4):349-56. PubMed
  6. Vaktskjold A, Talykova LV, Chashchin VP, Odland JØ, Nieboer E. Spontaneous abortions among nickel-exposed female refinery workers. Int J Environ Health Res. 2008 Apr;18(2):99-115. PubMed, CrossRef
  7. Labyntseva RD, Ulyanenko TV, Kosterіn SA. Effect of heavy metal ions on superprecipitation and ATPase activity of uterine smooth muscle actomyosin activity. Ukr Biokhim Zhurn. 1998 Mar-Apr;70(2):71-7. Russian. PubMed
  8. Labyntseva RD, Bobrowska OM, Chunikhin OYu, Kosterin SO. Effect of heavy metal cations on ATPase activity of actomyosin complex and myosin subfragment-1 of smooth muscle of the uterus. Ukr Biokhim Zhurn. 2011 Jul-Sep;83(4):84-93. Ukrainian. PubMed
  9. Gutsche CD. Calixarenes: an introduction, monographs in supramolecular chemistry. Royal Society of Chemistry. Cambridge, 2008. 276 p.
  10. Morohashi N, Narumi F, Iki N, Hattori T, Miyano S. Thiacalixarenes. Chem Rev. 2006 Dec;106(12):5291-316. PubMed, CrossRef
  11. Calixarenes for Separations. Eds.: Lumetta GJ, Rogers RD, Gopalan AS. American Chemical Society. – Washington, 2000. 366 p. CrossRef
  12. Kalchenko VI, Rodik RV, Boyko VI. Calixarenes. Prospects for biomedical applications. J Org Farm Chem. 2005;3(4):13-29. (In Ukrainian).
  13. Veklich ТО, Kosterin SO, Rodik RV, Cherenok SO, Boyko VI, Kalchenko VI. Effect of calixarene-phosphonic acid on Na+, K+-ATPase activity in plasma membranes of the smooth-muscle cells. Ukr Biokhim  Zhurn. 2006 Jan-Feb;78(1):70-78. (In Ukrainian). PubMed
  14. Cherenok S, Vovk A, Muravyova I, Shivanyuk A, Kukhar V, Lipkowski J, Kalchenko V. Calix[4]arene α-aminophosphonic acids: asymmetric synthesis and enantioselective inhibition of alkaline phosphatases. Org Lett. 2006 Feb 16;8(4):549-52.  PubMed, CrossRef
  15. Phan G, Semili N, Bouvier-Capely C, Landon G, Mekhloufi G, Huang N, Rebière F, Agarande M, Fattal E. Calixarene cleansing formulation for uranium skin contamination. Health Phys. 2013 Oct;105(4):382-9. PubMed, CrossRef
  16. Nimse SB, Kim T. Biological applications of functionalized calixarenes. Chem Soc Rev. 2013 Jan 7;42(1):366-86. Review. Erratum in: Chem Soc Rev. 2012 Dec 21;41(24):8212. PubMed, CrossRef
  17. Iki N, Fujimoto T, Miyano SA. A New Water-Soluble Host Molecule Derived from Thiacalixarene. Chem Lett. 1998;27(7):625-6. CrossRef
  18. Iki N, Morohashi N, Narumi F, Miyano S. High Complexation Ability of Thiacalixarene with Transition Metal Ions. The Effect of Replacing Methylene Bridges of Tetra(p-t-butyl)calyx[4]arenetetrol by Epithio Groups. Bull Chem Soc Jpn. 1998;71(7):1597-1603. CrossRef
  19. Coleman AW, Perret F, Moussa M, Dupin M, Guo Y, Perron H. Calix[n]arenes as protein sensors. Top Curr Chem. 2007;277:31-88. CrossRef
  20. Bilyk A, Dunlop JW, Fuller RO, Hall AK, Harrowfield JM, Hosseini MW, Koutsantonis GA, Murray IW, Skelton BW, Stamps RL, White AH. Systematic structural coordination chemistry of p-t-butyltetrathiacalix[4]arene: further complexes of transition-metal ions. Eur J Inorg Chem. 2010 Apr;2010(14) :2106-26. CrossRef
  21. Weeds AG, Taylor RS. Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin. Nature. 1975 Sep 4;257(5521):54-6. PubMedCrossRef
  22. Chen PS, Toribara TY, Warner H. Microdetermination of phosphorus. Anal Chem. 1956 Nov;28(11):1756-8. CrossRef
  23. Korostylev PP. Preparation of solutions for chemical analytical work. Moscow: Nauka, 1964. 202 p. (In Russian).
  24. Cassidy CE, Setzer WN. Cancer-relevant biochemical targets of cytotoxic Lonchocarpus flavonoids: a molecular docking analysis. J Mol Model. 2010 Feb;16(2):311-26. PubMed, CrossRef
  25. Houdusse A, Kalabokis VN, Himmel D, Szent-Györgyi AG, Cohen C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell. 1999 May 14;97(4):459-70. PubMed, CrossRef
  26. Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG. Structural changes of envelope proteins during alphavirus fusion. Nature. 2010 Dec 2;468(7324):705-8. PubMed, PubMedCentral, CrossRef
  27. Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with YASARA NOVA–a self-parameterizing force field. Proteins. 2002 May 15;47(3):393-402. PubMed, CrossRef
  28. Morohashi N, Iki N, Sugawara A, Miyano S. Selective oxidation of thiacalix[4]arenes to the sulfinyl or sulfonyl counterparts and their complexation abilities towards metal ions as studied by solvent extraction. Tetrahedron. 2001;57(26):5557-63. CrossRef
  29. Kofman E, Nankina VP. Some features of actomyosin superprecipitation and its possible mechanisms. By the book.: Biophysical and biochemical methods for investigating of muscle proteins. Leningrad: Leningrad State University, 1978. P. 82-86. (In Russian).
  30. Bugaenko LT, Ryabykh SM, Bugaenko AL. Almost complete system of average crystallographic ionic radii and its use for determining the ionization potentials. Vestn Mosk Univ. Series 2. Chemistry. 2008;4(6):363-383. (In Russian).
  31. Burghardt TP, Neff KL, Wieben ED, Ajtai K. Myosin individualized: single nucleotide polymorphisms in energy transduction. BMC Genomics. 2010 Mar 15;11:172. PubMed, PubMedCentral, CrossRef
  32. Risal D, Gourinath S, Himmel DM, Szent-Györgyi AG, Cohen C. Myosin subfragment 1 structures reveal a partially bound nucleotide and a complex salt bridge that helps couple nucleotide and actin binding. Proc Natl Acad Sci USA. 2004 Jun 15;101(24):8930-5.  PubMedPubMedCentral, CrossRef
  33. Mustafina AR, Skripacheva VV, Konova­lov AI. Outer-sphere association of calixarenes and other macrocyclic ligands with metal complexes as a basis for designing of molecular devices. Usp Chim. 2007;76(10):979-993. (In Russian).

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.