Ukr.Biochem.J. 2016; Том 88, № 1, січень-лютий, c. 44-50

doi: http://dx.doi.org/10.15407/ubj88.01.044

Модуляція індукованого цисплатином продукування активних форм кисню фулереном С(60) у нормальних та трансформованих лімфоїдних клітинах

Д. В. Франскевич, І. І. Гринюк, С. В. Прилуцька, О. П. Матишевська

Київський національний університет імені Тараса Шевченка, Україна;
е-mail: dashaqq@gmail.com

Досліджено ранні прояви дії протипухлинного препарату цисплатину та його комбінованої дії із представником вуглецевих наноструктур фулереном С60 на нормальні (тимоцити щура Wistar) та трансформовані (лімфоїдна лейкемія миші L1210) клітини. З використанням флуоресцентних зондів DCFH-DA та TMRE показано, що цисплатин (1 мкг/мл) спричиняв продукування активних форм кисню (АФК) та знижував величину мітохондріального потенціалу в клітинах обох типів. Комбінована обробка цисплатином (1 мкг/мл) та С60 (7,2 мкг/мл) призводила до різноспрямованої модуляції продукування АФК у тимоцитах та клітинах L1210. Індуковане цис­платином продукування АФК у клітинах L1210 посилювалось, тоді як у тимоцитах зменшувалось. Припускається, що виявлені різноспрямовані ефекти пов’язані з відмінностями в акумуляції та локалізації фулерена С60 у нормальних та злоякісних клітинах.

Ключові слова: , , , , ,


Посилання:

  1. Cepeda V, Fuertes MA, Castilla J, Alonso C, Quevedo C, Pérez JM. Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med Chem. 2007 Jan;7(1):3-18. Review. PubMed, CrossRef
  2. Florea AM, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel). 2011 Mar 15;3(1):1351-71. PubMed, PubMedCentral, CrossRef
  3. Florea AM, Büsselberg D. Anti-cancer drugs interfere with intracellular calcium signaling. Neurotoxicology. 2009 Sep;30(5):803-10. Review. PubMed, CrossRef
  4. Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F. [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005 Dec;5(12):2578-85. PubMed
  5. Johnston HJ, Hutchison GR, Christensen FM, Aschberger K, Stone V. The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol Sci. 2010 Apr;114(2):162-82. Review. PubMed, CrossRef
  6. Mroz P, Tegos GP, Gali H, Wharton T, Sarna T, Hamblin MR. Photodynamic therapy with fullerenes. Photochem Photobiol Sci. 2007 Nov;6(11):1139-49. Review. PubMed, PubMedCentral
  7. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 1987 Feb 15;47(4):936-42. PubMed
  8. Scharff P, Risch K, Carta-Abelmann L, Dmytruk IM, Bilyi MM, Golub OA, Khavryuchenko AV, Buzaneva EV,  Aksenov VL,  Avdeev MV, Prylutskyy YuI, Durov SS. Structure of C60 fullerene in water: spectroscopic data. Carbon. 2004 Feb; 42(5-6):1203-6. CrossRef
  9. Grynyuk ІІ, Prylutska SV, Slobodyanik NS, Chunikhin ОYu, Matyshevska ОP. The aggregate state of C60-fullerene in various media. Biotechnologia Acta. 2013 Jun; 6(6): 71-6. (In Russian).  CrossRef
  10. Matyshevska OP, Palyvoda KO, Prylutska SV, et al. Induction of apoptotic leukemic cells death with the use of fullerene C60. Nanoscale systems and nanomaterials research in Ukraine. Akademperiodiс. 2014: 524-29. (In Russian).
  11. Myhre O, Andersen JM, Aarnes H, Fonnum F. Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol. 2003 May 15;65(10):1575-82. PubMed
  12. Scaduto RC Jr, Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J. 1999 Jan;76(1 Pt 1):469-77.
    PubMed, PubMedCentral
  13. Plohinsky MA. Mathematical models in biology. M.: Pr. Univ., 1981: 265 p.  (In Russian).
  14. Wen S, Zhu D, Huang P. Targeting cancer cell mitochondria as a therapeutic approach. Future Med Chem. 2013 Jan;5(1):53-67. Review. PubMed, PubMedCentral, CrossRef
  15. Forrest MD. Why cancer cells have a more hyperpolarized mitochondrial membrane potential and emergent prospects for therapy. bioRxiv [Internet]. 2015 Aug. Available from: http: biorxiv.org. content. early. 2015. 08. 21. 025197.full-text.pdf+html CrossRef
  16. Park MS, De Leon M, Devarajan P. Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol. 2002 Apr;13(4):858-65. PubMed
  17. Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C. Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun. 2002 May 31;294(1):116-9. PubMed
  18. Horie M, Nishio K, Kato H, Shinohara N, Nakamura A, Fujita K, Kinugasa S, Endoh S, Yamamoto K, Yamamoto O, Niki E, Yoshida Y, Iwahashi H. In vitro evaluation of cellular responses induced by stable fullerene C60 medium dispersion. J Biochem. 2010 Sep;148(3):289-98. PubMed, CrossRef
  19. Santos SM, Dinis AM, Peixoto F, Ferreira L, Jurado AS, Videira RA. Interaction of fullerene nanoparticles with biomembranes: from the partition in lipid membranes to effects on mitochondrial bioenergetics. Toxicol Sci. 2014 Mar;138(1):117-29. PubMed, CrossRef
  20. Chistyakov VA, Prazdnova EV, Soldatov AV, Smirnova YuO, Alperovich I. Can C60 fullerene demonstrate properties of mitochondria-targeted antioxidant from the computational point of view? Int J Biol Biomed Eng. 2014;8:59-62.
  21. Drasler B, Drobne D, Sadeghpour A, Rappolt M. Fullerene up-take alters bilayer structure and elasticity: A small angle X-ray study. Chem Phys Lipids. 2015 May;188:46-53. PubMed, CrossRef
  22. Scharff P, Ritter U, Matyshevska OP, Prylutska SV, Grynyuk II, Golub AA, Prylutskyy YI, Burlaka AP. Therapeutic reactive oxygen generation. Tumori. 2008 Mar-Apr;94(2):278-83. PubMed
  23. Yang Y, Karakhanova S, Werner J, Bazhin AV. Reactive oxygen species in cancer biology and anticancer therapy. Curr Med Chem. 2013;20(30):3677-92. Review. PubMed
  24. Manda G, Nechifor MT, Neagu TM. Reactive oxygen species, cncer and anti-cancer therapies. Curr Chem Biol. 2009 Jul; 3(1):342-66. CrossRef
  25. Grynyuk I, Grebinyk S, Prylutska S, Mykhailova A, Franskevich D, Matyshevska O, Schütze C.,  Ritter U. Photoexcited fullerene C60 disturbs prooxidant-antioxidant balance in leukemic L1210 cells. Materwiss Werksttech. 2013 Mar; 44(2-3):139-43. CrossRef
  26. Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS, Doetsch PW. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One. 2013 Nov 19;8(11):e81162. PubMed, PubMedCentral, CrossRef
  27. Kim HJ, Lee JH, Kim SJ, Oh GS, Moon HD, Kwon KB, Park C, Park BH, Lee HK, Chung SY, Park R, So HS. Roles of NADPH oxidases in cisplatin-induced reactive oxygen species generation and ototoxicity. J Neurosci. 2010 Mar 17;30(11):3933-46. PubMed, CrossRef
  28. Melendez-Zajgla J, Cruz E, Maldonado V, Espinoza AM. Mitochondrial changes during the apoptotic process of HeLa cells exposed to cisplatin. Biochem Mol Biol Int. 1999 May;47(5):765-71. PubMed
  29. Muscella A, Calabriso N, Fanizzi FP, De Pascali SA, Urso L, Ciccarese A, Migoni D, Marsigliante S. [Pt(O,O’-acac)(gamma-acac)(DMS)], a new Pt compound exerting fast cytotoxicity in MCF-7 breast cancer cells via the mitochondrial apoptotic pathway. Br J Pharmacol. 2008 Jan;153(1):34-49.  PubMed, PubMedCentral
  30. Liang XJ, Meng H, Wang Y, He H, Meng J, Lu J, Wang PC, Zhao Y, Gao X, Sun B, Chen C, Xing G, Shen D, Gottesman MM, Wu Y, Yin JJ, Jia L. Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proc Natl Acad Sci USA. 2010 Apr 20;107(16):7449-54. PubMed, PubMedCentral, CrossRef
  31. Grebinyk SM, Artemenko OJ, Grynyuk II, Perepelytsina OM, Matyshevska OP. Change in concentration of cytosolic Ca2+ caused by extracellular ATP and ectoATPase activity in thymocytes and transformed MT-4 cells. Ukr Biokhim Zhurn. 2009 Mar-Apr;81(2):27-33. Ukrainian.  PubMed
  32. Levi N, Hantgan RR, Lively MO, Carroll DL, Prasad GL. C60-fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects. J Nanobiotechnology. 2006 Dec 14;4:14. PubMed, PubMedCentral
  33. Grebinyk SM, Grynyuk II. Prylutska SV, Matyshevska O P. Generation of active oxygen forms in rat thymocytes under action of hydrogen peroxide and fullerene C60. Ukr Biokhim Zhurn. 2012 Mar-Apr;84(2):48-52. Ukrainian. PubMed
  34. Prylutska SV, Grynyuk II, Matyshevska OP, Prylutskyy YI, Ritter U, Scharff P. Anti-oxidant properties of C60 fullerenes in vitro. Fuller. Nanotubes Carbon Nanostruct. 2008 Jun; 16(5-6):698-705. CrossRef
  35. Rade I, Natasa R, Biljana G, Aleksandar D, Borut S. Bioapplication and activity of fullerenol C60(OH)24. Afr J Biotechnol. 2008; 7 (25): 4940-50.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.