Ukr.Biochem.J. 2016; Том 88, № 1, січень-лютий, c. 99-108

doi: http://dx.doi.org/10.15407/ubj88.01.099

Ремодулювальний вплив доксорубіцину на кількісні показники залізовмісних протеїнів та редоксзалежні характеристики пухлини з урахуванням її чутливості до цитостатика

В. Ф. Чехун, Ю. В. Лозовська, А. П. Бурлака,
І. І. Ганусевич, Ю. В. Швець, Н. Ю. Лук’янова,
І. М. Тодор, Н. А. Трегубова, Л. А. Налєскіна

Інститут експериментальної патології, онкології і радіобіології ім. Р. Є. Кавецького НАН України, Київ;
e-mail: Lozovskaya.2012@mail.ru

Досліджено вміст заліза  та залізовмісних протеїнів, а саме феритину і трансферину, в сироватці крові та пухлинній тканині тварин із чутливою та резистентною до доксорубіцину  карциносаркомою Уокер-256 до та після дії цитостатика. Встановлено, що в сироватці крові та пухлинній тканині обох груп тварин за дії препарату відбувається паралельне зниження вмісту загального заліза, трансферину на фоні одночасного зростання вмісту феритину, що виявляє вираженіший характер у тварин із резистентними пухлинами. Показано, що за дії доксорубіцину в пухлинній тканині тварин із різною чутливістю до цитостатика спостерігаються протилежні зміни їхнього редокс-статусу, зміною вмісту комплексів «вільного» заліза, генерації АФК та концентрації активних форм матриксних металопротеїназ-2 та -9, а саме – зростання їх у тварин з чутливими пухлинами та зниження – з резистентними. Одержані дані можуть слугувати критерієм для розробки програм корекції порушень метаболізму заліза з метою підвищення чутливості пухлин до дії цитостатиків.

Ключові слова: , , , , , , ,


Посилання:

  1. Emmanuel NM. Chain reaction.  M.: Nauka. 1989. 328 p.(in Russian).
  2. Zhukov VI, Perepadya SV, Vinnik JuA, Zaytseva OV, Moiseenko AS. Oxidizing-antioxidizing interaction and structural-functional state of plasmatic membranes in patients receiving colorectal cancer. Visnyk Probl Biol Med. 2010;1:116-120.
  3. Burlaka AP, Sydoryk EP. Radical oxygen species and nitric oxide in tumor-protsesi. Kyiv: Science. Thought. 2006. 227 p. (in Ukrainian).
  4. Beguin Y, Aapro M, Ludwig H, Mizzen L, Osterborg A. Epidemiological and nonclinical studies investigating effects of iron in carcinogenesis–a critical review. Crit Rev Oncol Hematol. 2014 Jan;89(1):1-15. PubMed, CrossRef
  5. Prutki M, Poljak-Blazi M, Jakopovic M, Tomas D, Stipancic I, Zarkovic N. Altered iron metabolism, transferrin receptor 1 and ferritin in patients with colon cancer. Cancer Lett. 2006 Jul 18;238(2):188-96. PubMedCrossRef
  6. Ludwig H, Evstatiev R, Kornek G, Aapro M, Bauernhofer T, Buxhofer-Ausch V, Fridrik M, Geissler D, Geissler K, Gisslinger H, Koller E, Kopetzky G, Lang A, Rumpold H, Steurer M, Kamali H, Link H. Iron metabolism and iron supplementation in cancer patients. Wien Klin Wochenschr. 2015 Dec;127(23-24):907-19.  PubMed, PubMedCentral, CrossRef
  7. Bystrom LM, Rivella S. Cancer cells with irons in the fire. Free Radic Biol Med. 2015 Feb;79:337-42. PubMed, PubMedCentral, CrossRef
  8. Mukaide T, Hattori Y, Misawa N, Funahashi S, Jiang L, Hirayama T, Nagasawa H, Toyokuni S. Histological detection of catalytic ferrous iron with the selective turn-on fluorescent probe RhoNox-1 in a Fenton reaction-based rat renal carcinogenesis model. Free Radic Res. 2014 Sep;48(9):990-5.  PubMed, CrossRef
  9. Li J, Zhang D, Jefferson PA, Ward KM, Ayene IS. A bioactive probe for glutathione-dependent antioxidant capacity in breast cancer patients: implications in measuring biological effects of arsenic compounds. J Pharmacol Toxicol Methods. 2014 Jan-Feb;69(1):39-48.  PubMedPubMedCentral, CrossRef
  10. Gkouvatsos K, Papanikolaou G, Pantopoulos K. Regulation of iron transport and the role of transferrin. Biochim Biophys Acta. 2012 Mar;1820(3):188-202. Review. PubMed, CrossRef
  11. Kakhlon O, Gruenbaum Y, Cabantchik ZI. Ferritin expression modulates cell cycle dynamics and cell responsiveness to H-ras-induced growth via expansion of the labile iron pool. Biochem J. 2002 May 1;363(Pt 3):431-6. PubMed, PubMedCentral, CrossRef
  12. Chekhun VF, Lozovska YV, Burlaka AP, Lukyanova NY, Todor IN, Naleskina LA. Peculiarities of antioxidant system and iron metabolism in organism during development of tumor resistance to cisplatin. Exp Oncol. 2014 Sep;36(3):196-201. PubMed
  13. Recalcati S, Minotti G, Cairo G. Iron regulatory proteins: from molecular mechanisms to drug development. Antioxid Redox Signal. 2010 Nov 15;13(10):1593-616. Review. PubMed, CrossRef
  14. Cocco E, Porrini V, Derosas M, Nardi V, Biasiotto G, Maccarinelli F, Zanella I. Protective effect of mitochondrial ferritin on cytosolic iron dysregulation induced by doxorubicin in HeLa cells. Mol Biol Rep. 2013 Dec;40(12):6757-64.  PubMed, PubMed
  15. Pelicano H, Zhang W, Liu J, Hammoudi N, Dai J, Xu RH, Pusztai L, Huang P. Mitochondrial dysfunction in some triple-negative breast cancer cell lines: role of mTOR pathway and therapeutic potential. Breast Cancer Res. 2014 Sep 11;16(5):434. PubMed, PubMedCentral, CrossRef
  16. Chen G, Pelicano Н, Ogasawara MA, Wang F, Huang P.  Targeting Mitochondria of Cancer Cells: Mechanisms and Compounds. Available at http://link.springer.com/chapter/10.1007/978-94-017-8984-4_8 (accesed, May, 2014) CrossRef
  17. Elliott RL, Head JF. Cancer: Tumor Iron Metabolism, Mitochondrial Dysfunction and Tumor Immunosuppression; “A Tight Partnership–Was Warburg Correct?” J Cancer Therapy. 2012;3(4):278-311. CrossRef
  18. Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer. 2013 May;13(5):342-55. Review. PubMed, PubMedCentral, CrossRef
  19. Chekhun V., Lukianova N., Demash D., Borikun T., Chekhun S., Shvets Y.  Manifestation of key molecular genetics markers in pharmacocorrection of endogenous iron metabolism in MCF-7 and MCF-7/DDP human breast cancer. CellBio. 2013;2(4):217-227. CrossRef
  20. Yurchenko OV, Todor IN,  Tryndyak VP, Tregubova NA, Kovtonyuk OV, Solyanik GI, Kulik GI, Chekhun VF. Resistance of Guerin’s carcinoma cells to cisplatine: biochemical and morphological aspects. Exp Oncol. 2003; 25: 64-68.
  21. Pogribny IP, Tryndyak VP, Pogribna M, Shpyleva SI, Surratt G, Gamboa da Costa G, Beland FA. Modulation of intracellular iron metabolism by iron chelation affects chromatin remodeling proteins and corresponding epigenetic modifications in breast cancer cells and increases their sensitivity to chemotherapeutic agents. Int J Oncol. 2013 Mar;42(5):1822-32. CrossRef
  22. Muramatsu S, Tanaka S, Mogushi K, Adikrisna R, Aihara A, Ban D, Ochiai T, Irie T, Kudo A, Nakamura N, Nakayama K, Tanaka H, Yamaoka S, Arii S. Visualization of stem cell features in human hepatocellular carcinoma reveals in vivo significance of tumor-host interaction and clinical course. Hepatology. 2013 Jul;58(1):218-28. PubMed, CrossRef
  23. Manna A, Saha P, Sarkar A, Mukhopadhyay D, Bauri AK, Kumar D, Das P, Chattopadhyay S, Chatterjee M. Malabaricone-A induces a redox imbalance that mediates apoptosis in U937 cell line. PLoS One. 2012;7(5):e36938.  PubMed, PubMedCentralCrossRef
  24. Solovyeva NI, Ryzhakova OS. Methods for determining matrix metalloproteinase activity. Klin Lab Diagn. 2010 Feb;(2):17-21. Russian. PubMed
  25. Joshi RS, Morán E, Sánchez M. Cellular iron metabolism-the IRP/IRE regulatory network. Iron metabolism. Available from: http://www.intechopen.com/books/iron-metabolism/cellular-iron-metabolism-the-irp-ire-regulatory-network (accessed. June 2012).
  26. Canzoneri JC, Oyelere AK. Interaction of anthracyclines with iron responsive element mRNAs. Nucleic Acids Res. 2008 Dec;36(21):6825-34. PubMedPubMedCentral, CrossRef
  27. Min Pang BS, Connor JR. Role of ferritin in cancer biology. J Cancer Sci Ther. 2015; 7(5):155-160.  CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.