Ukr.Biochem.J. 2016; Том 88, № 6, листопад-грудень, c. 35-44

doi: https://doi.org/10.15407/ubj88.06.035

Вуглеводний склад поверхневого слизу кишечника щурів після введення цефтриаксону

Ю. В. Голота, Я. А. Олефір, Т. В. Довбинчук, Г. М. Толстанова

ННЦ «Інститут біології та медицини», Київський національний
університет імені Тараса Шевченка, Україна;
е-mail: gtolstanova@gmail.com

Епідеміологічні дослідження показали, що використання антибіотиків істотно підвищує ризик розвитку запальних захворювань кишечника. Одним із потенційних механізмів такої залежності є порушення функціонування його слизового бар’єра. Метою дослідження було з’ясувати як змінюється вуглеводний склад та загальний вміст глікопротеїнів поверхневого слизу кишечника щурів після введення антибіотика цефтриаксону. Дослідження проводили на щурах-самцях лінії Вістар (140–160 г). Цефтриаксон (300 мг/кг, в/м) вводили щоденно впродовж 14 днів. Загальний вміст глікопротеїнів слизу, гексоз, гексозамінів, фукози та сіалових кислот визначали на 15-, 29-ту та 72-гу добу експерименту в термінальному відділі тонкої та в товстій кишці. Введення цефтриаксону не впливало на загальний вміст глікопротеїнів поверхневого слизу тонкої кишки щурів. У товстій кишці на 72-гу добу спостерігалось вірогідне зниження в 1,3 раза (Р < 0,05) вмісту глікопротеїнів у поверхневій слизі. Ці зміни супроводжувалися зниженням вмісту гексоз в 1,2 раза (Р < 0,05) і фукози 3,1 раза (Р < 0,05) та підвищенням в 1,5 раза (Р < 0,05) рівня сіалових кислот. Отже, введення цефтриаксону індукує віддалені в часі зміни вмісту та вуглеводного складу глікопротеїнів слизу товстої кишки щурів, які відповідають таким за розвитку запальних захворювань кишечника.

Ключові слова: , , , , ,


Посилання:

  1. Shaw SY, Blanchard JF, Bernstein CN. Association between the use of antibiotics and new diagnoses of Crohn’s disease and ulcerative colitis. Am J Gastroenterol. 2011 Dec;106(12):2133-42. PubMed, CrossRef
  2. Hviid A, Svanström H, Frisch M. Antibiotic use and inflammatory bowel diseases in childhood. Gut. 2011 Jan;60(1):49-54. PubMed, CrossRef
  3. Wlodarska M, Willing B, Keeney KM, Menendez A, Bergstrom KS, Gill N, Russell SL, Vallance BA, Finlay BB. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect Immun. 2011 Apr;79(4):1536-45. PubMed, PubMedCentral, CrossRef
  4. Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007 May;1(1):56-66. PubMed, CrossRef
  5. Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, Young VB. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun. 2009 Jun;77(6):2367-75. PubMed, PubMedCentral, CrossRef
  6. Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA. 2011 Mar 15;108 Suppl 1:4659-65. PubMed, PubMedCentral, CrossRef
  7. McGuckin MA, Lindén SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nat Rev Microbiol. 2011 Apr;9(4):265-78. Review. PubMed, CrossRef
  8. Larsson JM, Karlsson H, Sjövall H, Hansson GC. A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn. Glycobiology. 2009 Jul;19(7):756-66. PubMed, CrossRef
  9. Karlsson NG, Herrmann A, Karlsson H, Johansson ME, Carlstedt I, Hansson GC. The glycosylation of rat intestinal Muc2 mucin varies between rat strains and the small and large intestine. A study of O-linked oligosaccharides by a mass spectrometric approach. J Biol Chem. 1997 Oct 24;272(43):27025-34. PubMed, CrossRef
  10. An G, Wei B, Xia B, McDaniel JM, Ju T, Cummings RD, Braun J, Xia L. Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J Exp Med. 2007 Jun 11;204(6):1417-29. PubMed, PubMedCentral, CrossRef
  11. Fu J, Wei B, Wen T, Johansson ME, Liu X, Bradford E, Thomsson KA, McGee S, Mansour L, Tong M, McDaniel JM, Sferra TJ, Turner JR, Chen H, Hansson GC, Braun J, Xia L. Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J Clin Invest. 2011 Apr;121(4):1657-66. PubMed, PubMedCentral, CrossRef
  12. Corfield AP, Wagner SA, Clamp JR, Kriaris MS, Hoskins LC. Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect Immun. 1992 Oct;60(10):3971-8. PubMed, PubMedCentral
  13. Shirazi T, Longman RJ, Corfield AP, Probert CS. Mucins and inflammatory bowel disease. Postgrad Med J. 2000 Aug;76(898):473-8. Review. PubMed, PubMedCentral, CrossRef
  14. Sun J, Shen X, Li Y, Guo Z, Zhu W, Zuo L, Zhao J, Gu L, Gong J, Li J. Therapeutic Potential to Modify the Mucus Barrier in Inflammatory Bowel Disease. Nutrients. 2016 Jan 14;8(1). pii: E44. Review. PubMed, PubMedCentral, CrossRef
  15. Carlstedt-Duke B, Høverstad T, Lingaas E, Norin KE, Saxerholt H, Steinbakk M, Midtvedt T. Influence of antibiotics on intestinal mucin in healthy subjects. Eur J Clin Microbiol. 1986 Dec;5(6):634-8. PubMed, CrossRef
  16. Sidorenko SV. Ushkalova EA. Clinical and pharmacoeconomic effectiveness of ceftriaxone in surgical patients. Pharmateca. 2003;64(1): 11.
  17. Akiba Y, Guth PH, Engel E, Nastaskin I, Kaunitz JD. Dynamic regulation of mucus gel thickness in rat duodenum. Am J Physiol Gastrointest Liver Physiol. 2000 Aug;279(2):G437-47. PubMed, CrossRef
  18. Romanenko EG, Klenyna IA. Method for determining of total glycoproteins in saliva. World Med Biol. 2012;4:91-93. (In Russian).
  19. Kolb VH, Kamyshnikov VS. Clinical Biochemistry. Minsk: Belarus, 1976. 380 p. (In Russian).
  20. Dishe Z, Shettles LB. A specific color reaction of methylpentoses and a spectrophotometric micromethod for their determination. J Biol Chem. 1948 Sep;175(2):595-603. PubMed
  21. Romanenko EG, Klenyna IA. Method for determination of hexosamines in saliva. Bull Probl Biol Med. 2013;2(1):215-217. (In Russian).
  22. Holota Y., Dzyubenko N., Ostapchuk A., Dovbynchuk T., Serhiychuk T., Putnikov A., Kaji I., Tolstanova G. Long-Term Effect of Antibiotic Therapy on Colonic Levels of Short-chain Fatty Acids (SCFA), FFA2 and FFA3 Receptors. The 15th Int. Conf. of Ulcer Research. Ottawa, Canada, 2015. P. 48.
  23. McGuckin MA, Eri R, Simms LA, Florin TH, Radford-Smith G. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis. 2009 Jan;15(1):100-13. Review. PubMed, CrossRef
  24. Campbell BJ, Finnie IA, Hounsell EF, Rhodes JM. Direct demonstration of increased expression of Thomsen-Friedenreich (TF) antigen in colonic adenocarcinoma and ulcerative colitis mucin and its concealment in normal mucin. J Clin Invest. 1995 Feb;95(2):571-6. PubMed, PubMedCentral, CrossRef
  25. Okada Y, Sotozono M, Sakai N, Yonei T, Nakanishi S, Tsuji T. Fucosylated Thomsen-Friedenreich antigen in alpha-anomeric configuration in human gastric surface epithelia: an allogeneic carbohydrate antigen possibly controlled by the Se gene. J Histochem Cytochem. 1994 Mar;42(3):371-6. PubMed, CrossRef
  26. Karlén P, Young E, Broström O, Löfberg R, Tribukait B, Ost K, Bodian C, Itzkowitz S. Sialyl-Tn antigen as a marker of colon cancer risk in ulcerative colitis: relation to dysplasia and DNA aneuploidy. Gastroenterology. 1998 Dec;115(6):1395-404. PubMed, CrossRef
  27. Campbell BJ, Yu LG, Rhodes JM. Altered glycosylation in inflammatory bowel disease: a possible role in cancer development. Glycoconj J. 2001 Nov-Dec;18(11-12):851-8. Review. PubMed, CrossRef
  28. Luissint AC, Parkos CA, Nusrat A. Inflammation and the Intestinal Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair. Gastroenterology. 2016 Oct;151(4):616-32. Review. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.