Ukr.Biochem.J. 2017; Том 89, № 3, травень-червень, c. 5-16

doi: https://doi.org/10.15407/ubj89.03.005

Біологічна роль літію – фундаментальні і медичні аспекти

О. С. Микоша, О. І. Ковзун, М. Д. Тронько

ДУ «Інститут ендокринології та обміну речовин ім. В. П. Комісаренка НАМН України», Київ;
e-mail: asmikosha@gmail.com

В огляді представлені відомості про біологічні ефекти літію в організмі людини і тварин та наступних проявах цих ефектів. Так як іонний радіус літію близький до розміру іона магнію літій здатний конкурувати з магнієм як кофактор деяких магнійзалежних ензимів. Численні роботи свідчать, що літій є інгібітором кінази глікогенсинтази 3. Він також пригнічує фосфатази, які беруть участь в обміні фосфоінозитидів і фосфор аденілат 3′-нуклеотидаз. Так як ці ензими відіграють важливу, а іноді ключову роль в діяльності сигнальних систем, літій здатний впливати на найважливіші фізіологічні, адаптаційні та патогенетичні процеси.

Ключові слова: , , , , ,


Посилання:

  1. Voinar AI. Biological role of trace elements in the human and animal body. M., 1960, 544 p.
  2. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009 Jul;17(1):9-26. Review. PubMed, PubMedCentral, CrossRef
  3. Rosso SB, Inestrosa NC. WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci. 2013 Jul 4;7:103. PubMed, PubMedCentral, CrossRef
  4. Manisastry SM, Han M, Linask KK. Early temporal-specific responses and differential sensitivity to lithium and Wnt-3A exposure during heart development. Dev Dyn. 2006 Aug;235(8):2160-74. PubMed
  5. Lee TM, Hsu YJ. Lithium promotion of connexin43 protein in infarcted rats by Wnt-and PI3K/Akt-dependent GSK-3β phosphorylation signaling. FASEB J. 2013; 27(1 Supplement): 1188-1.
  6. Vestergaard P, Rejnmark L, Mosekilde L. Reduced relative risk of fractures among users of lithium. Calcif Tissue Int. 2005 Jul;77(1):1-8. PubMed
  7. Wilting I, de Vries F, Thio BM, Cooper C, Heerdink ER, Leufkens HG, Nolen WA, Egberts AC, van Staa TP. Lithium use and the risk of fractures. Bone. 2007 May;40(5):1252-8.
    PubMed
  8. Bolton JM, Metge C, Lix L, Prior H, Sareen J, Leslie WD. Fracture risk from psychotropic medications: a population-based analysis. J Clin Psychopharmacol. 2008 Aug;28(4):384-91. PubMed, CrossRef
  9. Lauing KL, Sundaramurthy S, Nauer RK, Callaci JJ. Exogenous activation of Wnt/β-catenin signaling attenuates binge alcohol-induced deficient bone fracture healing. Alcohol Alcohol. 2014 Jul-Aug;49(4):399-408. PubMed, PubMedCentral, CrossRef
  10. Clément-Lacroix P, Ai M, Morvan F, Roman-Roman S, Vayssière B, Belleville C, Estrera K, Warman ML, Baron R, Rawadi G. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci USA. 2005 Nov 29;102(48):17406-11. PubMed, PubMedCentral
  11. Satija NK, Sharma D, Afrin F, Tripathi RP, Gangenahalli G. High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage. PLoS One. 2013;8(1):e55769. PubMed, PubMedCentral, CrossRef
  12. de Boer J, Siddappa R, Gaspar C, van Apeldoorn A, Fodde R, van Blitterswijk C. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells.  Bone. 2004 May;34(5):818-26. PubMed, CrossRef
  13. Li J, Khavandgar Z, Lin SH, Murshed M. Lithium chloride attenuates BMP-2 signaling and inhibits osteogenic differentiation through a novel WNT/GSK3- independent mechanism. Bone. 2011 Feb;48(2):321-31. PubMed, CrossRef
  14. Li Y, Gao Q, Yin G, Ding X, Hao J. WNT/β-catenin-signaling pathway stimulates the proliferation of cultured adult human Sertoli cells via upregulation of C-myc expression. Reprod Sci. 2012 Nov;19(11):1232-40. PubMed, CrossRef
  15. Lowthert L, Leffert J, Lin A, Umlauf S, Maloney K, Muralidharan A, Lorberg B, Mane S, Zhao H, Sinha R, Bhagwagar Z, Beech R. Increased ratio of anti-apoptotic to pro-apoptotic Bcl2 gene-family members in lithium-responders one month after treatment initiation. Biol Mood Anxiety Disord. 2012 Sep 12;2:15. PubMed, PubMedCentral
  16. Wei YB, Backlund L, Wegener G, Mathé AA, Lavebratt C. Telomerase dysregulation in the hippocampus of a rat model of depression: normalization by lithium. Int J Neuropsychopharmacol. 2015 Jan 24;18(7):pyv002. PubMed, PubMedCentral, CrossRef
  17. Abu-Baker A, Laganiere J, Gaudet R, Rochefort D, Brais B, Neri C, Dion PA, Rouleau GA. Lithium chloride attenuates cell death in oculopharyngeal muscular dystrophy by perturbing Wnt/β-catenin pathway. Cell Death Dis. 2013 Oct 3;4:e821. PubMed, PubMedCentral, CrossRef
  18. Yuskaitis CJ, Mines MA, King MK, Sweatt JD, Miller CA, Jope RS. Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of fragile X syndrome. Biochem Pharmacol. 2010 Feb 15;79(4):632-46. PubMed, PubMedCentral, CrossRef
  19. King MK, Jope RS. Lithium treatment alleviates impaired cognition in a mouse model of fragile X syndrome. Genes Brain Behav. 2013 Oct;12(7):723-31. PubMed, PubMedCentral, CrossRef
  20. Higgins GA, Allyn-Feuer A, Barbour E, Athey BD. A glutamatergic network mediates lithium response in bipolar disorder as defined by epigenome pathway analysis. Pharmacogenomics. 2015;16(14):1547-63. PubMed, CrossRef
  21. Forlenza OV, De-Paula VJ, Diniz BS. Neuroprotective effects of lithium: implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem Neurosci. 2014 Jun 18;5(6):443-50.   PubMed, PubMedCentral, CrossRef
  22. Fornai F, Longone P, Cafaro L, Kastsiuchenka O, Ferrucci M, Manca ML, Lazzeri G, Spalloni A, Bellio N, Lenzi P, Modugno N, Siciliano G, Isidoro C, Murri L, Ruggieri S, Paparelli A. Lithium delays progression of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA. 2008 Feb 12;105(6):2052-7. PubMed, PubMedCentral, CrossRef
  23. Lovestone S, Davis DR, Webster MT, Kaech S, Brion JP, Matus A, Anderton BH. Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations. Biol Psychiatry. 1999 Apr 15;45(8):995-1003. PubMed, CrossRef
  24. Alvarez G, Muñoz-Montaño JR, Satrústegui J, Avila J, Bogónez E, Díaz-Nido J. Lithium protects cultured neurons against beta-amyloid-induced neurodegeneration. FEBS Lett. 1999 Jun 25;453(3):260-4. PubMed, CrossRef
  25. Su Y, Ryder J, Li B, Wu X, Fox N, Solenberg P, Brune K, Paul S, Zhou Y, Liu F, Ni B. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing. Biochemistry. 2004 Jun 8;43(22):6899-908. PubMed, CrossRef
  26. Sofola-Adesakin O, Castillo-Quan JI, Rallis C, Tain LS, Bjedov I, Rogers I, Li L, Martinez P, Khericha M, Cabecinha M, Bähler J, Partridge L. Lithium suppresses Aβ pathology by inhibiting translation in an adult Drosophila model of Alzheimer’s disease. Front Aging Neurosci. 2014 Jul 30;6:190. PubMed, PubMedCentral, CrossRef
  27. Castillo-Quan JI, Li L, Kinghorn KJ, Ivanov DK, Tain LS, Slack C, Kerr F, Nespital T, Thornton J, Hardy J, Bjedov I, Partridge L. Lithium Promotes Longevity through GSK3/NRF2-Dependent Hormesis. Cell Rep. 2016 Apr 19;15(3):638-50. PubMed, PubMedCentral, CrossRef
  28. Dash PK, Johnson D, Clark J, Orsi SA, Zhang M, Zhao J, Grill RJ, Moore AN, Pati S. Involvement of the glycogen synthase kinase-3 signaling pathway in TBI pathology and neurocognitive outcome. PLoS One. 2011;6(9):e24648. PubMed, PubMedCentral, CrossRef
  29. Yu F, Zhang Y, Chuang DM. Lithium reduces BACE1 overexpression, β amyloid accumulation, and spatial learning deficits in mice with traumatic brain injury. J Neurotrauma. 2012 Sep;29(13):2342-51. PubMed, PubMedCentral, CrossRef
  30. Valvezan AJ, Klein PS. GSK-3 and Wnt Signaling in Neurogenesis and Bipolar Disorder. Front Mol Neurosci. 2012 Jan 30;5:1. PubMed, PubMedCentral, CrossRef
  31. Contestabile A, Greco B, Ghezzi D, Tucci V, Benfenati F, Gasparini L. Lithium rescues synaptic plasticity and memory in Down syndrome mice. J Clin Invest. 2013 Jan;123(1):348-61. PubMed, PubMedCentral, CrossRef
  32. Pardo M, Abrial E, Jope RS, Beurel E. GSK3β isoform-selective regulation of depression, memory and hippocampal cell proliferation. Genes Brain Behav. 2016 Mar;15(3):348-55. PubMed, PubMedCentral, CrossRef
  33. Eldar-Finkelman H, Schreyer SA, Shinohara MM, LeBoeuf RC, Krebs EG. Increased glycogen synthase kinase-3 activity in diabetes- and obesity-prone C57BL/6J mice. Diabetes. 1999 Aug;48(8):1662-6. PubMed, CrossRef
  34. Henriksen EJ, Kinnick TR, Teachey MK, O’Keefe MP, Ring D, Johnson KW, Harrison SD. Modulation of muscle insulin resistance by selective inhibition of GSK-3 in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab. 2003 May;284(5):E892-900. PubMed, CrossRef
  35. Nikoulina SE, Ciaraldi TP, Mudaliar S, Mohideen P, Carter L, Henry RR. Potential role of glycogen synthase kinase-3 in skeletal muscle insulin resistance of type 2 diabetes. Diabetes. 2000 Feb;49(2):263-71. PubMed, CrossRef
  36. Saran AS. Antidiabetic effects of lithium. J Clin Psychiatry. 1982 Sep;43(9):383-4. PubMed
  37. Rossetti L. Normalization of insulin sensitivity with lithium in diabetic rats. Diabetes. 1989 May;38(5):648-52. PubMed
  38. Srivastava P, Saxena AK, Kale RK, Baquer NZ. Insulin like effects of lithium and vanadate on the altered antioxidant status of diabetic rats. Res Commun Chem Pathol Pharmacol. 1993 Jun;80(3):283-93. PubMed
  39. Fernández-Novell JM, Rodríguez-Gil JE, Barberà A, Guinovart JJ. Lithium ions increase hepatic glycogen synthase stability through a proteasome-related mechanism. Arch Biochem Biophys. 2007 Jan 1;457(1):29-34. PubMed
  40. Henriksen EJ, Dokken BB. Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr Drug Targets. 2006 Nov;7(11):1435-41. Review. PubMed
  41. García-Martínez JM, Chocarro-Calvo A, Moya CM, García-Jiménez C. WNT/beta-catenin increases the production of incretins by entero-endocrine cells. Diabetologia. 2009 Sep;52(9):1913-24. doi: 10.1007/s00125-009-1429-1. PubMed
  42. Knop FK, Vilsbøll T, Højberg PV, Larsen S, Madsbad S, Vølund A, Holst JJ, Krarup T. Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes. 2007 Aug;56(8):1951-9. PubMed, CrossRef
  43. Aminzadeh A, Dehpour AR, Safa M, Mirzamohammadi S, Sharifi AM. Investigating the protective effect of lithium against high glucose-induced neurotoxicity in PC12 cells: involvements of ROS, JNK and P38 MAPKs, and apoptotic mitochondria pathway. Cell Mol Neurobiol. 2014 Nov;34(8):1143-50. PubMed, CrossRef
  44. Sinha D, Wang Z, Ruchalski KL, Levine JS, Krishnan S, Lieberthal W, Schwartz JH, Borkan SC. Lithium activates the Wnt and phosphatidylinositol 3-kinase Akt signaling pathways to promote cell survival in the absence of soluble survival factors. Am J Physiol Renal Physiol. 2005 Apr;288(4):F703-13. PubMed
  45. Pushkarev VM, Tronko ND, Kostyuchenko NN, Mikosha AS. Effect of o,p’-DDD and Li+ on apoptotic DNA fragmentation in conventionally normal and tumour tissues of human adrenal cortex. Ukr Biokhim Zhurn. 2007 Mar-Apr;79(2):44-9. PubMed
  46. Shalbuyeva N, Brustovetsky T, Brustovetsky N. Lithium desensitizes brain mitochondria to calcium, antagonizes permeability transition, and diminishes cytochrome C release. J Biol Chem. 2007 Jun 22;282(25):18057-68. PubMed, CrossRef
  47. Scola G, Kim HK, Young LT, Salvador M, Andreazza AC. Lithium reduces the effects of rotenone-induced complex I dysfunction on DNA methylation and hydroxymethylation in rat cortical primary neurons. Psychopharmacology (Berl). 2014 Oct;231(21):4189-98. PubMed, CrossRef
  48. Streck EL, Scaini G, Jeremias GC, Rezin GT, Gonçalves CL, Ferreira GK, Réus GZ, Resende WR, Valvassori SS, Kapczinski F, Andersen ML, Quevedo J. Effects of Mood Stabilizers on Brain Energy Metabolism in Mice Submitted to an Animal Model of Mania Induced by Paradoxical Sleep Deprivation. Neurochem Res. 2015 Jun;40(6):1144-52. PubMed, CrossRef
  49. Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004 Jun;113(11):1535-49. PubMed, PubMedCentral
  50. Tanno M, Kuno A, Ishikawa S, Miki T, Kouzu H, Yano T, Murase H, Tobisawa T, Ogasawara M, Horio Y, Miura T. Translocation of glycogen synthase kinase-3β (GSK-3β), a trigger of permeability transition, is kinase activity-dependent and mediated by interaction with voltage-dependent anion channel 2 (VDAC2). J Biol Chem. 2014 Oct 17;289(42):29285-96. PubMed, PubMedCentral, CrossRef
  51. Bocchetta A, Cocco F, Velluzzi F, Del Zompo M, Mariotti S, Loviselli A. Fifteen-year follow-up of thyroid function in lithium patients. J Endocrinol Invest. 2007 May;30(5):363-6. PubMed
  52. Kibirige D, Luzinda K, Ssekitoleko R. Spectrum of lithium induced thyroid abnormalities: a current perspective. Thyroid Res. 2013 Feb 7;6(1):3. PubMed, PubMedCentral, CrossRef
  53. Lazarus JH. Lithium and thyroid. Best Pract Res Clin Endocrinol Metab. 2009;23(6): 723-733. CrossRef
  54. Prakash I, Nylen ES, Sen S. Lithium as an Alternative Option in Graves Thyrotoxicosis. Case Rep Endocrinol. 2015;2015:869343. PubMed, PubMedCentral, CrossRef
  55. Rao AS, Kremenevskaja N, Resch J, Brabant G. Lithium stimulates proliferation in cultured thyrocytes by activating Wnt/beta-catenin signalling. Eur J Endocrinol. 2005 Dec;153(6):929-38. PubMed, CrossRef
  56. Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA. 1996 Aug 6;93(16):8455-9. PubMed, PubMedCentral
  57. Stambolic V, Ruel L, Woodgett JR. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol. 1996 Dec 1;6(12):1664-8. PubMed, CrossRef
  58. Ryves WJ, Harwood AJ. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem Biophys Res Commun. 2001 Jan 26;280(3):720-5. PubMed, CrossRef
  59. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997 Jul 1;16(13):3797-804. PubMed, PubMedCentral, CrossRef
  60. Beaulieu JM, Sotnikova TD, Yao WD, Kockeritz L, Woodgett JR, Gainetdinov RR, Caron MG. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA. 2004 Apr 6;101(14):5099-104. PubMed, PubMedCentral, CrossRef
  61. Beaulieu JM, Marion S, Rodriguiz RM, Medvedev IO, Sotnikova TD, Ghisi V, Wetsel WC, Lefkowitz RJ, Gainetdinov RR, Caron MG. A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell. 2008 Jan 11;132(1):125-36. PubMed, CrossRef
  62. Pan JQ, Lewis MC, Ketterman JK, Clore EL, Riley M, Richards KR, Berry-Scott E, Liu X, Wagner FF, Holson EB, Neve RL, Biechele TL, Moon RT, Scolnick EM, Petryshen TL, Haggarty SJ. AKT kinase activity is required for lithium to modulate mood-related behaviors in mice. Neuropsychopharmacology. 2011 Jun;36(7):1397-411. PubMed, PubMedCentral, CrossRef
  63. York JD, Ponder JW, Majerus PW. Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc Natl Acad Sci USA. 1995 May 23;92(11):5149-53. PubMed, PubMedCentral
  64. Bone R, Springer JP, Atack JR. Structure of inositol monophosphatase, the putative target of lithium therapy. Proc Natl Acad Sci USA. 1992 Nov 1;89(21):10031-5. PubMed, PubMedCentral
  65. Bone R, Frank L, Springer JP, Atack JR. Structural studies of metal binding by inositol monophosphatase: evidence for two-metal ion catalysis. Biochemistry. 1994 Aug 16;33(32):9468-76. PubMed
  66. Dutta A, Bhattacharyya S, Dutta D, Das AK. Structural elucidation of the binding site and mode of inhibition of Li(+) and Mg(2+) in inositol monophosphatase. FEBS J. 2014 Dec;281(23):5309-24. PubMed, CrossRef
  67. Haimovich A, Eliav U, Goldbourt A. Determination of the lithium binding site in inositol monophosphatase, the putative target for lithium therapy, by magic-angle-spinning solid-state NMR. J Am Chem Soc. 2012 Mar 28;134(12):5647-51. PubMed, CrossRef
  68. Pushkarev VM, Kovzun OI, Tronko MD, Kostiuchenko NM, Mikosha AS. The role of phosphoinositides, protein kinase C and protein kinase A in the K+ regulatory signal transduction in human adrenocortical cells. Ukr Biokhim Zhurn. 2005 Jan-Feb;77(1):65-71. (In Ukrainian). PubMed
  69. Pushkarev V.M., Mikosha A.S., Tronko N.D., Yarovaya L.V. Lithium ions effect in vitro on K+-dependent stimulation of RNA and protein biosynthesis in adrenal cortex of guinea pig.  Lithium. 1994; 5:47-52.
  70. Kovzun EI, Lukashenya OS, Pushkarev VM, Mikosha AS, Tron’ko ND. Effect of ions of potassium and lithium on NO synthase expression in the human adrenal cortex. Bull Exp Biol Med. 2014 Jan;156(3):332-4.  PubMed, CrossRef
  71. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol. 2005 Sep 26;170(7):1101-11. PubMed, PubMedCentral
  72. Toker L, Agam G. Lithium, inositol and mitochondria. ACS Chem Neurosci. 2014 Jun 18;5(6):411-2. PubMed, PubMedCentral, CrossRef
  73. Toker L, Bersudsky Y, Plaschkes I, Chalifa-Caspi V, Berry GT, Buccafusca R, Moechars D, Belmaker RH, Agam G. Inositol-related gene knockouts mimic lithium’s effect on mitochondrial function. Neuropsychopharmacology. 2014 Jan;39(2):319-28. PubMed, PubMedCentral, CrossRef
  74. Frederick JP, Tafari AT, Wu SM, Megosh LC, Chiou ST, Irving RP, York JD. A role for a lithium-inhibited Golgi nucleotidase in skeletal development and sulfation. Proc Natl Acad Sci USA. 2008 Aug 19;105(33):11605-12. PubMed, PubMedCentral
  75. Toledano E, Ogryzko V, Danchin A, Ladant D, Mechold U. 3′-5′ phosphoadenosine phosphate is an inhibitor of PARP-1 and a potential mediator of the lithium-dependent inhibition of PARP-1 in vivo. Biochem J. 2012 Apr 15;443(2):485-90. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.