Ukr.Biochem.J. 2020; Том 92, № 1, січень-лютий, c. 21-30

doi: https://doi.org/10.15407/ubj92.01.021

Інгібування Nа(+),K(+)-АТРази та активація міозинової АТРази калікс[4]ареном С-107 стимулює тонічну складову скоротливої активності ізольованих гладеньких м’язів

Т. О. Векліч1, Р. Д. Лабинцева1, О. А. Шкрабак1, О. В. Цимбалюк2,
Р. В. Родік3, В. І. Кальченко3, С. О. Костерін1

1Інститут біохімії ім. О. В. Палладіна НАН України, Київ;
2Інститут високих технологій, Київський національний університет імені Тараса Шевченка, Україна;
3Інститут органічної хімії НАН України, Київ;
e-mail: veklich@biochem.kiev.ua; otsymbal@bigmir.net; manli@ioch.kiev.ua

Отримано: 04 липня 2019; Затверджено: 29 листопада 2019

Метою дослідження було показати, що синтетична сполука калікс[4]арен С-107 виявляє кілька унікальних біохімічних та фізіологічних ефектів на гладенькі м’язи і є перспективною для медичного застосування. Зокрема, цей калікс[4]арен є ефективним інгібітором Nа+,K+-АТРази міометрія (І50 = 54 ± 6 нМ), селективним відносно інших АТР-гідролаз плазматичної мембрани та одночасно активатором ензиматичної активності міозинової АТРази гладеньких м’язів (А50 = 9,6 ± 0,7 мкМ). Такі реципрокні біохімічні ефекти спрямовані на одну фізіологічну відповідь, а саме стимулювання скоротливої активності гладеньких м’язів, що було продемонстровано на різних ізольованих гладеньких м’язах тензометричним методом. А саме: калікс[4]арен С-107 стимулює підвищення тонічної складової спричинених окситоцином скорочень міометрія, а також зумовлених гіперкалієвим розчином та ацетилхоліном скорочень м’яза caecum товстого кишечника, та утримання цього підвищеного тонусу тривалий час. Отже, калікс[4]арен С-107 є перспективною речовиною для посилення базального тонусу та/або активації скорочувальної активності гладеньком’язових органів у разі їхніх гіпотонічних дисфункційних порушень.

Ключові слова: , , , , , ,


Посилання:

  1. Kosterin SO, Babich LG, Shlykov SG, Danylovych IuV, Veklich ТО,  Mazur YuYu. Biochemical properties and regulation of smooth muscle cell Са2+-transporting systems. К.: Science opinion, 2016. 210 р.
  2. Hertelendy F, Zakar T. Regulation of myometrial smooth muscle functions. Curr Pharm Des. 2004;10(20):2499-517. PubMed, CrossRef
  3. Otaibi MA. The physiological mechanism of uterine contraction with emphasis on calcium ion. Calcium Signaling. 2014; 1(2): 70-75.
  4. Kosterin SO. Calcium transport in smooth muscles. К.: Science opinion, 1990. 216 р.
  5. Veklich TO, Mazur IuIu, Kosterin SO. Mg2+,ATP-depenent plasma membrane calcium pump of smooth muscle cells. ІІ. Regulation of acrivity. Ukr Biochem J. 2015 Mar-Apr;87(2):5-25. (In Ukrainian). PubMed, CrossRef
  6. Burdyga T, Paul RJ. Chapter 86 – Calcium Homeostasis and Signaling in Smooth Muscle Muscle. Muscle. 2012;2:1155–1171. CrossRef
  7. Geering K. FXYD proteins: new regulators of Na-K-ATPase. Am J Physiol Renal Physiol. 2006 Feb;290(2):F241-50. PubMed, CrossRef
  8. dos Santos L, Xavier FE, Vassallo DV, Rossoni LV. Cyclooxygenase pathway is involved in the vascular reactivity and inhibition of the Na+, K+-ATPase activity in the tail artery from L-NAME-treated rats. Life Sci. 2003 Dec 19;74(5):613-27. PubMed, CrossRef
  9. Li D, Qu X, Hou K, Zhang Y, Dong Q, Teng Y, Zhang J, Liu Y. PI3K/Akt is involved in bufalin-induced apoptosis in gastric cancer cells. Anticancer Drugs. 2009 Jan;20(1):59-64.  PubMed, CrossRef
  10. Tsymbalyuk OV, Kosterin SO. Na+,K+-ATPase, endogenous cardiotonic steroids and their transducing role. Ukr Biokhim Zhurn. 2012 Jan-Feb;84(1):5-17. (In Ukrainian). PubMed
  11. Han KQ, Huang G, Gu W, Su YH, Huang XQ, Ling CQ. Anti-tumor activities and apoptosis-regulated mechanisms of bufalin on the orthotopic transplantation tumor model of human hepatocellular carcinoma in nude mice. World J Gastroenterol. 2007 Jun 28;13(24):3374-9.  PubMed, PubMedCentral, CrossRef
  12. Levitsky DI. Actomyosin systems of biological motility. Biochemistry (Mosc). 2004 Nov;69(11):1177-89. PubMed, CrossRef
  13. Preller  M, Manstein DJ. Myosin Motors: Structural Aspects and Functionality.  In book:  Reference Module in Life Sciences. 2017.  CrossRef
  14. Woodcock NA, Taylor CW, Thornton S. Effect of an oxytocin receptor antagonist and rho kinase inhibitor on the [Ca++]i sensitivity of human myometrium. Am J Obstet Gynecol. 2004 Jan;190(1):222-8. PubMed, CrossRef
  15. Brown HK, Speechley KN, Macnab J, Natale R, Campbell MK. Biological determinants of spontaneous late preterm and early term birth: a retrospective cohort study. BJOG. 2015 Mar;122(4):491-9.  PubMed, CrossRef
  16. Doyle J, Silber A. Preterm labor: role of the nurse practitioner. Nurse Pract. 2015 Mar 12;40(3):49-54. PubMed, CrossRef
  17. Rodik RV, Boyko VI, Kalchenko VI. Calixarenes in bio-medical researches. Curr Med Chem. 2009;16(13):1630-55. PubMed, CrossRef
  18. Komisarenko SV, Kosterin SO, Lugovskoy EV, Kalchenko VI. Calixarene methylene bisphosphonic acids as promising effectors of biochemical processes. Ukr Biochem J. 2013; 85(6): 106-128. CrossRef
  19. Rodik R, Boiko V, Danylyuk O, Suwinska K, Tsymbal I, Slinchenko N, Babich L, Shlykov S, Kosterin S, Lipkowski J, Kalchenko V. Calix[4]arenesulfonylamidines. Synthesis, structure and influence on Mg2+,ATP-dependent calcium pumps. Tetrahedron Lett. 2005;46(43):7459-7462.  CrossRef
  20. Veklich TO, Kosterin SO, Rodik RV, Cherenok SO, Boyko VI, Kalchenko VI. Effect of calixarene-phosphonic acid on Na+,K+-ATPase activity in plasma membranes of the smooth-muscle cells. Ukr Biokhim Zhurn. 2006 Jan-Feb;78(1):70-86. (In Ukrainian). PubMed
  21. Veklich TO, Kosterin SO. Comparative study of properties of Na+,K+-ATPase and Mg2+-ATPase of the myometrium plasma membrane. Ukr Biokhim Zhurn. 2005 Mar-Apr;77(2):66-75. (In Ukrainian). PubMed
  22. Kondraytuk ТP, Bychenok SF, Prishchepa LA, Babich LG, Kursky MD, Osipenko AA. Isolation and characteristics of the fraction of plasma membranes in pig myometrium. Ukr Biokhim Zhurn. 1986 Jul-Aug;58(4):50-6. (In Russian). PubMed
  23. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72(1-2):248-54. PubMed, CrossRef
  24. Bárány M, Bárány K, Gaetjens E, Bailin G. Chicken gizzard myosin. Arch Biochem Biophys. 1966 Jan;113(1):205-22. PubMed, CrossRef
  25. Weber A. The ultracentrifugal separation of L-myosin and actin in an actomyosin sol under the influence of ATP. Biochim Biophys Acta. 1956 Feb;19(2):345-51. PubMed, CrossRef
  26. Veklich TO, Kosterin SO. Comparative study of properties of Na+,K+-ATPase and Mg2+-ATPase of the myometrium plasma membrane. Ukr Biokhim Zhurn. 2005 Mar-Apr;77(2):66-75. (In Ukrainian). PubMed
  27. Flynn ER, Bradley KN, Muir TC, McCarron JG. Functionally separate intracellular Ca2+ stores in smooth muscle. J Biol Chem. 2001 Sep 28;276(39):36411-8. PubMed, CrossRef
  28. Veklich TO, Kosterin SO, Shynlova OP. Cationic specificity of a Ca2+-accumulating system in smooth muscle cell mitochondria. Ukr Biokhim Zhurn. 2002 Jan-Feb;74(1):42-8. (In Ukrainian). PubMed
  29. Valente RC, Capella LS, Monteiro RQ, Rumjanek VM, Lopes AG, Capella MA. Mechanisms of ouabain toxicity. FASEB J. 2003 Sep;17(12):1700-2. PubMed, CrossRef
  30. Rathbun WB, Betlach MV.  Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate. Anal Biochem. 1969 Apr 4;28(1):436-45. PubMed, CrossRef
  31. Chen PS, Toribara TY, Warner H. Microdetermination of Phosphorus. Anal Chem. 1956;28(11):1756–1758. CrossRef
  32. Kurganov VI. Allosteric enzymes. M.: Nauka, 1978. 248 p.
  33. Tsymbaliuk OV, Naumenko AM, Skoryk MA, Nyporko OYu, Davidovska TL,  Skryshevsky VA. Histamine- and nicotine-stimulated modulations of mechanic activity of smooth muscles in gastrointestinal tract at the impact of nanosized TiO2 material. Biopolym Cell. 2016;32(2): 140-149. CrossRef
  34. Burdyga ThV, Kosterin SA. Kinetic analysis of smooth muscle relaxation. Gen Physiol Biophys. 1991 Dec;10(6):589-98. PubMed
  35. Iwane AH, Kitamura K, Tokunaga M, Yanagida T. Myosin subfragment-1 is fully equipped with factors essential for motor function. Biochem Biophys Res Commun. 1997 Jan 3;230(1):76-80. PubMed, CrossRef
  36. Danylovych НV, Danylovych YuV, Rodik RV, Kalchenko VI,  Chunikhin AJu. Cаlіx[4]аrene as modulators of energy-dependent Сa2+-accumulation and functioning of the electron transport chain in smooth muscle mitochondria. Fiziol Zh. 2016;62(5): 27-36. (In Ukrainian).  PubMed, CrossRef
  37. Viero C, Shibuya I, Kitamura N, Verkhratsky A, Fujihara H, Katoh A, Ueta Y, Zingg HH, Chvatal A, Sykova E, Dayanithi G. REVIEW: Oxytocin: Crossing the bridge between basic science and pharmacotherapy. CNS Neurosci Ther. 2010 Oct;16(5):e138-56.  PubMed, PubMedCentral, CrossRef
  38. Olson ML, Sandison ME, Chalmers S, McCarron JG. Microdomains of muscarinic acetylcholine and Ins(1,4,5)P₃ receptors create ‘Ins(1,4,5)P₃ junctions’ and sites of Ca2+ wave initiation in smooth muscle. J Cell Sci. 2012 Nov 15;125(Pt 22):5315-28.  PubMed, PubMedCentral, CrossRef
  39. Murthy KS. Signaling for contraction and relaxation in smooth muscle of the gut. Annu Rev Physiol. 2006;68:345-74. PubMed, CrossRef
  40. Tsymbalyuk ОV, Rodik RV, Kalchenko VІ, Kosterin SО. The mekhanokinetical parameters of contractile activity of rat caecum smooth muscles under the conditions of calixarene C107 chronic action in vivo. Physics Alive. 2010;18(1):47-51. (In Ukrainian).
  41. Tsymbalyuk OV, Kosterin SO, Rodik RV, Kalchenko VI. Comparative study of in vitro and in vivo effect of ouabain and calixarene C107 on Na+,K+-ATPase activity in plasma membranes of rat hepatocytes. Ukr Biokhim Zhurn. 2010 Jul-Aug;82(4):78-85. (In Ukrainian). PubMed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.