Ukr.Biochem.J. 2022; Том 94, № 2, березень-квітень, c. 57-65

doi: https://doi.org/10.15407/ubj94.02.057

Зміни в експресії TRPV4 та TRPM8 каналів у товстій кишці щурів із індукованою 6-OHDA хворобою Паркінсона

В. О. Стецька1, Т. В. Довбинчук1, Н. В. Дзюбенко2,
O. В. Жолос1, Г. М. Толстанова2*

1ННЦ «Інститут біології та медицини», Київський національний університет імені Тараса Шевченка, Україна;
2Інститут високих технологій, Київський національний університет імені Тараса Шевченка, Україна;
*e-mail: ganna.tolstanova@knu.ua

Отримано: 01 червня 2021; Затверджено: 01 липня 2022

Хвороба Паркінсона (ХП) – це нейродегенеративне захворювання, яке супроводжується дегенерацією дофамінергічних нейронів у чорній субстанції. Немоторні симптоми, зокрема розлади шлунково-кишкового тракту (ШКТ), спостерігаються у 20-80% пацієнтів за 15-20 років до клінічно діагностованої ХП і є не менш важливою ознакою цієї хвороби. Транзієнтний рецептор потенціалу (TRP) каналів експресується у ШКТ, де вони відіграють важливу роль у смаку, терморегуляції, болю, функції слизової оболонки, гомеостазі, контролі інтерстиціальної рухливості тощо. Мета цієї роботи – дослідити внесок TRPV4 та TRPM8 каналів у моторну функцію ШКТ щурів з ХП, яку було індуковано ін’єкцією 12 мкг 6-гідроксидофаміну (6-OHDA). Дослідження проводили через 4 тижні та 7 місяців після моделювання ХП. Щурів було випадковим чином розділено на чотири групи: I група – хибнооперовані щури, ін’єкція 4 мкл 0,9% NaCl, аутопсія через 4 тижні після ін’єкції (n = 5); II група – щури з 6-OHDA індукованою ХП, ін’єкція 4 мкл 12 мкг 6-OHDA, аутопсія через 4 тижні після ін’єкції (n = 5); III група – хибнооперовані щури, ін’єкція 4 мкл 0,9% NaCl, аутопсія через 7 місяців після ін’єкції (n = 4); IV група – щури з 6-OHDA індукованою ХП, ін’єкція 4 мкл 12 мкг 6-OHDA, аутопсія через 7 місяців після ін’єкції (n = 5). Оцінювали масу тіла щурів, час проходження ШКТ, індекс маси цекуму та імуногістохімічну ідентифікацію тирозин гідроксилази (TH)-позитивних клітин, експресію TRPV4, TRPM8 каналів товстої кишки. Показано, що на 7-й місяць експерименту, час проходження ШКТ збільшився вдвічі; індекс маси цекуму в щурів із 6-OHDA збільшився на 57%; у товстій кишці щурів знизилася кількість TH-позитивних клітин в 2 рази, тоді як TRPM8 іонні канали були знижені у щурів із ХП, а TRPV4 іонні канали були підвищені в товстій кишці щурів із 6-OHDA-ХП. Зроблено висновок, TRPV4 та TRPM8 іонні канали можуть бути фармакологічною мішенню у терапії патогенезу ХП.

Ключові слова: , , , ,


Посилання:

  1. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896-912. PubMed, CrossRef
  2. Pfeiffer RF. Gastrointestinal dysfunction in Parkinson’s disease. Parkinsonism Relat Disord. 2011;17(1):10-15. PubMed, CrossRef
  3. Herath M, Hosie S, Bornstein JC, Franks AE, Hill-Yardin EL. The Role of the Gastrointestinal Mucus System in Intestinal Homeostasis: Implications for Neurological Disorders. Front Cell Infect Microbiol. 2020;10:248. PubMed, PubMedCentral, CrossRef
  4. Pedrosa Carrasco AJ, Timmermann L, Pedrosa DJ. Management of constipation in patients with Parkinson’s disease. NPJ Parkinsons Dis. 2018;4:6.
    PubMed, PubMedCentral,CrossRef
  5. Williams-Gray CH, Worth PF. Parkinson’s disease. Medicine. 2016;44(9):542-546. CrossRef
  6. Van Kampen JM, Baranowski DC, Robertson HA, Shaw CA, Kay DG. The Progressive BSSG Rat Model of Parkinson’s: Recapitulating Multiple Key Features of the Human Disease. PLoS One. 2015;10(10):e0139694. PubMed, PubMedCentral, CrossRef
  7. Lama J, Buhidma Y, Fletcher EJR, Duty S. Animal models of Parkinson’s disease: a guide to selecting the optimal model for your research. Neuronal Signal. 2021;5(4):NS20210026. PubMed, PubMedCentral, CrossRef
  8. Lima AC, Meurer YSR, Bioni VS, Cunha DMG, Gonçalves N, Lopes-Silva LB, Becegato M, Soares MBL, Marinho GF, Santos JR, Silva RH. Female Rats Are Resistant to Cognitive, Motor and Dopaminergic Deficits in the Reserpine-Induced Progressive Model of Parkinson’s Disease. Front Aging Neurosci. 2021;13:757714. PubMed, PubMedCentral, CrossRef
  9. Michalick L, Kuebler WM. TRPV4-A Missing Link Between Mechanosensation and Immunity. Front Immunol. 2020;11:413. PubMed, PubMedCentral, CrossRef
  10. Cenac N, Bautzova T, Le Faouder P, Veldhuis NA, Poole DP, Rolland C, Bertrand J, Liedtke W, Dubourdeau M, Bertrand-Michel J, Zecchi L, Stanghellini V, Bunnett NW, Barbara G, Vergnolle N. Quantification and Potential Functions of Endogenous Agonists of Transient Receptor Potential Channels in Patients With Irritable Bowel Syndrome. Gastroenterology. 2015;149(2):433-444.e7. PubMed, CrossRef
  11. Luo J, Qian A, Oetjen LK, Yu W, Yang P, Feng J, Xie Z, Liu S, Yin S, Dryn D, Cheng J, Riehl TE, Zholos AV, Stenson WF, Kim BS, Hu H. TRPV4 Channel Signaling in Macrophages Promotes Gastrointestinal Motility via Direct Effects on Smooth Muscle Cells. Immunity. 2018;49(1):107-119.e4. PubMed, PubMedCentral, CrossRef
  12. Amato A, Terzo S, Lentini L, Marchesa P, Mulè F. TRPM8 Channel Activation Reduces the Spontaneous Contractions in Human Distal Colon. Int J Mol Sci. 2020;21(15):5403. PubMed, PubMedCentral, CrossRef
  13. Matsumoto K, Kato S. TRPV4 regulates vascular endothelial permeability during colonic inflammation in dextran sulphate sodium-induced murine colitis. Nihon Yakurigaku Zasshi. 2018;152(4):170-174. PubMed, CrossRef
  14. Stetska VO, Dovbynchuk TV, Makedon YS, Dziubenko NV. The effect of water-soluble pristine C60 fullerene on 6-OHDA-induced Parkinson’s disease in rats. Regul Mech Biosyst. 2021; 12(4):599-607. CrossRef
  15. Stetska VO, Moroz OF, Dovbynchuk TV, Tolstanova GM, Zholos AV. The Role of TRPV4 Cation Channels in Smooth Muscle Contractile Activity in Rats. Ukr Z Med Bіol Sportu. 2020; 5(6):370-377. CrossRef
  16. Aiello M, Eleopra R, Rumiati RI. Body weight and food intake in Parkinson’s disease. A review of the association to non-motor symptoms. Appetite. 2015;84:204-211. PubMed, CrossRef
  17. Ma K, Xiong N, Shen Y, Han C, Liu L, Zhang G, Wang L, Guo S, Guo X, Xia Y, Wan F, Huang J, Lin Z, Wang T. Weight Loss and Malnutrition in Patients with Parkinson’s Disease: Current Knowledge and Future Prospects. Front Aging Neurosci. 2018;10:1.  PubMed, PubMedCentral, CrossRef
  18. Zucca A, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol. 2017;155:96-119. PubMed, PubMedCentral, CrossRef
  19. Graff J, Brinch K, Madsen JL. Gastrointestinal mean transit times in young and middle-aged healthy subjects. Clin Physiol. 2001;21(2):253-259. PubMed, CrossRef
  20. Rhee KJ, Wu S, Wu X, Huso DL, Karim B, Franco AA, Rabizadeh S, Golub JE, Mathews LE, Shin J, Sartor RB, Golenbock D, Hamad AR, Gan CM, Housseau F, Sears CL. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009r;77(4):1708-1718. PubMed, PubMedCentral, CrossRef
  21. Loesche WJ. Effect of bacterial contamination on cecal size and cecal contents of gnotobiotic rodents. J Bacteriol. 1969;99(2):520-526. PubMed, PubMedCentral, CrossRef
  22. Killinger B, Labrie V. The Appendix in Parkinson’s Disease: From Vestigial Remnant to Vital Organ? J Parkinsons Dis. 2019;9(s2):S345-S358. PubMed, PubMedCentral, CrossRef
  23. Shultz JM, Resnikoff H, Bondarenko V, Joers V, Mejia A, Simmons H, Emborg ME. Neurotoxin-Induced Catecholaminergic Loss in the Colonic Myenteric Plexus of Rhesus Monkeys. J Alzheimers Dis Parkinsonism. 2016;6(6):279. PubMed, PubMedCentral, CrossRef
  24. Singaram C, Ashraf W, Gaumnitz EA, Torbey C, Sengupta A, Pfeiffer R, Quigley EM. Dopaminergic defect of enteric nervous system in Parkinson’s disease patients with chronic constipation. Lancet. 1995;346(8979):861-864. PubMed, CrossRef
  25. Harrington AM, Hughes PA, Martin CM, Yang J, Castro J, Isaacs NJ, Blackshaw AL, Brierley SM. A novel role for TRPM8 in visceral afferent function. Pain. 2011;152(7):1459-1468. PubMed, CrossRef
  26. Ramachandran R, Hyun E, Zhao L, Lapointe TK, Chapma K, Hirota CL, Ghosh S, McKemy DD, Vergnolle N, Beck PL, Altier C, Hollenberg MD. TRPM8 activation attenuates inflammatory responses in mouse models of colitis. Proc Natl Acad Sci USA. 2013;110(18):7476-7481. PubMed, PubMedCentral, CrossRef
  27. Mustafa S, Oriowo M. Cooling-induced contraction of the rat gastric fundus: mediation via transient receptor potential (TRP) cation channel TRPM8 receptor and Rho-kinase activation. Clin Exp Pharmacol Physiol. 2005;32(10):832-838. PubMed, CrossRef
  28. Ambort D, Johansson MEV, Gustafsson JK, Nilsson HE, Ermund A, Johansson BR, Koeck PJB, Hebert H, Hansson GC. Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin. Proc Natl Acad Sci USA. 2012;109(15):5645-5650. PubMed, PubMedCentral,CrossRef
  29. Holzer P. TRP channels in the digestive system. Curr Pharm Biotechnol. 2011;12(1):24-34. PubMed, PubMedCentral,CrossRef
  30. Yamawaki H, Mihara H, Suzuki N, Nishizono H, Uchida K, Watanabe S, Tominaga M, Sugiyama T. Role of transient receptor potential vanilloid 4 activation in indomethacin-induced intestinal damage. Am J Physiol Gastrointest Liver Physiol. 2014;307(1):G33-G40. PubMed, CrossRef
  31. Sukumaran P, Sun Y, Schaar A, Selvaraj S, Singh BB. TRPC Channels and Parkinson’s Disease. Adv Exp Med Biol. 2017;976:85-94. PubMed, PubMedCentral, CrossRef
  32. D’Aldebert E, Cenac N, Rousset P, Martin L, Rolland C, Chapman K, Selves J, Alric L, Vinel JP, Vergnolle N. Transient receptor potential vanilloid 4 activated inflammatory signals by intestinal epithelial cells and colitis in mice. Gastroenterology. 2011;140(1):275-285. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.