Ukr.Biochem.J. 2023; Том 95, № 4, липень-серпень, c. 55-63

doi: https://doi.org/10.15407/ubj95.04.055

Ундеценова кислота та N,N-дибутилундециенамід як ефективний антибактеріальний засіб проти антибіотикостійких штамів

Ю. Д. Старцева*, Д. М. Година, І. В. Семенюта,
О. П. Тарасюк, С. П. Рогальський, Л. О. Метелиця

Інститут біоорганічної хімії та нафтохімії ім. В. П. Кухаря НАН України, Київ;
*e-mail: startseva1991@gmail.com

Отримано: 25 квітня 2023; Виправлено: 03 липня 2023;
Затверджено: 07 вересня 2023; Доступно онлайн: 12 вересня 2023

Проведено оцінку активності ундециленової кислоти (УК) та її третинного аміду N,N-дибутилундеценаміду (ДБУК) in vitro проти стандартних та антибіотикорезистентних штамів Escherichia coli та Staphylococcus aureus. Антибактеріальний потенціал кислоти та її аміду в концентраціях 2,5 і 5,0 мкМ як проти грампозитивних бактеріальних (S. aureus), так і грамнегативних (E. coli) культур підтверджено моніторингом діаметра зон пригнічення росту бактерій. Докінг-дослідження визначило метіонінамінопептидазу (MAP) як найбільш енергетично сприятливу потенційну біомішень, асоційовану з лікарською стійкістю E. coli та S. aureus з енергією зв’язування в діапазоні від -8,0 до -8,5 ккал/моль. Комплексоутворення лігандів відбувалося за рахунок утворення водневих зв’язків з ASP108, HIS171, HIS178, GLU204, GLU235, HIS76, ASP104, GLU233, ASP93 та металоакцепторної взаємодії з Co2+. Отримані результати показали, що активність UA та DBUA проти антибіотикорезистентних штамів створює перспективи для розробки нових антибактеріальних препаратів.

Ключові слова: , , , , ,


Посилання:

  1. Calder PC. The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot Essent Fatty Acids. 2008;79(3-5):101-108. PubMed, PubMedCentral, CrossRef
  2. Desbois AP. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Pat Antiinfect Drug Discov. 2012;7(2):111-122. PubMed, CrossRef
  3. Wang KL, Wu ZH, Wang Y, Wang CY, Xu Y. Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs. Mar Drugs. 2017;15(9):266. PubMed, PubMedCentral, CrossRef
  4. Mondol MAM, Shin HJ. Antibacterial and antiyeast compounds from marine-derived bacteria. Mar Drugs. 2014;12(5):2913-2921. PubMed, PubMedCentral, CrossRef
  5. Altieri C, Bevilacqua A, Cardillo D, Sinigaglia M. Antifungal activity of fatty acids and their monoglycerides against Fusarium spp. in a laboratory medium. Int J Food Sci Technol. 2009;44(2):242-245. CrossRef
  6. Liu X, Han R, Wang Y, Li X, Zhang M, Yan Y. Fungicidal activity of a medium-chain fatty acids mixture comprising caprylic, pelargonic and capric acids. Plant Pathol J. 2014;13(1):65-70. CrossRef
  7. Clitherow KH, Binaljadm TM, Hansen J, Spain SG, Hatton PV, Murdoch C. Medium-Chain Fatty Acids Released from Polymeric Electrospun Patches Inhibit Candida albicans Growth and Reduce the Biofilm Viability. ACS Biomater Sci Eng. 2020;6(7):4087-4095. PubMed, PubMedCentral, CrossRef
  8. Shi D, Zhao Y, Yan H, Fu H, Shen Y, Lu G, Mei H, Qiu Y, Li D, Liu W. Antifungal effects of undecylenic acid on the biofilm formation of Candida albicans. Int J Clin Pharmacol Ther. 2016;54(5):343-353. PubMed, CrossRef
  9. Thormar H, Isaacs CE, Brown HR, Barshatzky MR, Pessolano T. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob Agents Chemother. 1987;31(1):27-31. PubMed, PubMedCentral, CrossRef
  10. Van der Steen M, Stevens CV. Undecylenic acid: a valuable and physiologically active renewable building block from castor oil. ChemSusChem. 2009;2(8):692-713. PubMed, CrossRef
  11. Ma Q, Ola M, Iracane E, Butler G. Susceptibility to Medium-Chain Fatty Acids Is Associated with Trisomy of Chromosome 7 in Candida albicans. mSphere. 2019;4(3):e00402-19. PubMed, PubMedCentral, CrossRef
  12. Novak AF, Solar JM, Mod RR, Magne FC, Skau EL. Antimicrobial activity of some N-substituted amides of long-chain fatty acids. Appl Microbiol. 1969;18(6):1050-1056. PubMed, PubMedCentral, CrossRef
  13. Koshti N, Ratnaparkhe SK, Mali DA, Sawant B, Vaidya PD. Antimicrobial preservative compositions for personal care products. US Patent 2014/0309302 A1. 16.10.2014.
  14. Doležalová M, Janiš R, Svobodová H, Kašpárková V, Humpolíček P, Krejči J. Antimicrobial properties of 1‐monoacylglycerols prepared from undecanoic (C11:0) and undecenoic (C11:1) acid. Eur J Lipid Sci Technol. 2010;112(10):1106-1114. CrossRef
  15. Petrović M, Bonvin D, Hofmann H, Mionić Ebersold M. Fungicidal PMMA-Undecylenic Acid Composites. Int J Mol Sci. 2018;19(1):184. PubMed, PubMedCentral, CrossRef
  16. Rogalsky S, Tarasyuk O, Vashchuk A, Davydenko V, Dzhuzha O, Motrunich S, Cherniavska T, Papeikin O, Bodachivska L, Bardeau JF. Synthesis and evaluation of N,N-dibutylundecenamide as new eco-friendly plasticizer for polyvinyl chloride. J Mater Sci. 2022;57(10):6102-6114. CrossRef
  17. Chai SC, Wang WL, Ding DR, Ye QZ. Growth inhibition of Escherichia coli and methicillin-resistant Staphylococcus aureus by targeting cellular methionine aminopeptidase. Eur J Med Chem. 2011;46(8):3537-3540. PubMed, PubMedCentral, CrossRef
  18. He J, Qiao W, An Q, Yang T, Luo Y. Dihydrofolate reductase inhibitors for use as antimicrobial agents. Eur J Med Chem. 2020;195:112268.
    PubMed, CrossRef
  19. Nandan A, Nampoothiri KM. Therapeutic and biotechnological applications of substrate specific microbial aminopeptidases. Appl Microbiol Biotechnol. 2020;104(12):5243-5257. PubMed, PubMedCentral, CrossRef
  20. Schreiber M, Res I, Matter A. Protein kinases as antibacterial targets. Curr Opin Cell Biol. 2009;21(2):325-330. PubMed, CrossRef
  21. Helgren TR, Wangtrakuldee P, Staker BL, Hagen TJ. Advances in Bacterial Methionine Aminopeptidase Inhibition. Curr Top Med Chem. 2016;16(4):397-414. PubMed, PubMedCentral, CrossRef
  22. Juhás M, Pallabothula VSK, Grabrijan K, Šimovičová M, Janďourek O, Konečná K, Bárta P, Paterová P, Gobec S, Sosič I, Zitko J. Design, synthesis and biological evaluation of substituted 3-amino-N-(thiazol-2-yl)pyrazine-2-carboxamides as inhibitors of mycobacterial methionine aminopeptidase 1. Bioorg Chem. 2022;118:105489. PubMed, CrossRef
  23. Lu JP, Chai SC, Ye QZ. Catalysis and inhibition of Mycobacterium tuberculosis methionine aminopeptidase. J Med Chem. 2010;53(3):1329-1337. PubMed, PubMedCentral, CrossRef
  24. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493-496. PubMed
  25. Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model. 1999;17(1):57-61. PubMed
  26. Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity – a rapid access to atomic charges. Tetrahedron. 1980;36(22):3219-3228. CrossRef
  27. Lowther WT, Zhang Y, Sampson PB, Honek JF, Matthews BW. Insights into the mechanism of Escherichia coli methionine aminopeptidase from the structural analysis of reaction products and phosphorus-based transition-state analogues. Biochemistry. 1999;38(45):14810-14819. PubMed, CrossRef
  28. Rossi A, Martins MP, Bitencourt TA, Peres NTA, Rocha CHL, Rocha FMG, Neves-da-Rocha J, Lopes MER, Sanches PR, Bortolossi JC, Martinez-Rossi NM. Reassessing the Use of Undecanoic Acid as a Therapeutic Strategy for Treating Fungal Infections. Mycopathologia. 2021;186(3):327-340. PubMed, CrossRef
  29. Mionić Ebersold M, Petrović M, Fong WK, Bonvin D, Hofmann H, Milošević I. Hexosomes with Undecylenic Acid Efficient against Candida albicans. Nanomaterials (Basel). 2018;8(2):91. PubMed, PubMedCentral, CrossRef
  30. McLain N, Ascanio R, Baker C, Strohaver RA, Dolan JW. Undecylenic acid inhibits morphogenesis of Candida albicans. Antimicrob Agents Chemother. 2000;44(10):2873-2875. PubMed, PubMedCentral, CrossRef
  31. Garg A, Sharma GS, Goyal AK, Ghosh G, Si SC, Rath G. Recent advances in topical carriers of anti-fungal agents. Heliyon. 2020;6(8):e04663. PubMed, PubMedCentral, CrossRef
  32. Lee JH, Kim YG, Khadke SK, Lee J. Antibiofilm and antifungal activities of medium-chain fatty acids against Candida albicans via mimicking of the quorum-sensing molecule farnesol. Microb Biotechnol. 2021;14(4):1353-1366. PubMed, PubMedCentral, CrossRef
  33. Thibane VS, Ells R, Hugo A, Albertyn J, van Rensburg WJJ, Van Wyk PWJ, Kock JLF, Pohl CH. Polyunsaturated fatty acids cause apoptosis in C. albicans and C. dubliniensis biofilms. Biochim Biophys Acta. 2012;1820(10):1463-1468. PubMed, CrossRef
  34. Lenihan-Geels G, Bishop KS, Ferguson LR. Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients. 2013;5(4):1301-1315. PubMed, PubMedCentral, CrossRef
  35. Vílchez R, Lemme A, Ballhausen B, Thiel V, Schulz S, Jansen R, Sztajer H, Wagner-Döbler I. Streptococcus mutans inhibits Candida albicans hyphal formation by the fatty acid signaling molecule trans-2-decenoic acid (SDSF). Chembiochem. 2010;11(11):1552-1562. PubMed, CrossRef
  36. Muthamil S, Balasubramaniam B, Balamurugan K, Pandian SK. Synergistic Effect of Quinic Acid Derived From Syzygium cumini and Undecanoic Acid Against Candida spp. Biofilm and Virulence. Front Microbiol. 2018;9:2835. PubMed, PubMedCentral, CrossRef
  37. Prasath KG, Sethupathy S, Pandian SK. Proteomic analysis uncovers the modulation of ergosterol, sphingolipid and oxidative stress pathway by myristic acid impeding biofilm and virulence in Candida albicans. J Proteomics. 2019;208:103503. PubMed, CrossRef
  38. Muthamil S, Prasath KG, Priya A, Precilla P, Pandian SK. Global proteomic analysis deciphers the mechanism of action of plant derived oleic acid against Candida albicans virulence and biofilm formation. Sci Rep. 2020;10(1):5113. PubMed, PubMedCentral, CrossRef
  39. Kim YG, Lee JH, Park JG, Lee J. Inhibition of Candida albicans and Staphylococcus aureus biofilms by centipede oil and linoleic acid. Biofouling. 2020;36(2):126-137. PubMed, CrossRef
  40. Yuyama KT, Rohde M, Molinari G, Stadler M, Abraham WR. Unsaturated Fatty Acids Control Biofilm Formation of Staphylococcus aureus and Other Gram-Positive Bacteria. Antibiotics (Basel). 2020;9(11):788. PubMed, PubMedCentral, CrossRef
  41. Abbas Abel Anzaku, Josiah Ishaku Akyala, Adeola Juliet, Ewenighi Chinwe Obianuju. Antibacterial Activity of Lauric Acid on Some Selected Clinical Isolates. Ann Clin Lab Res. 2017;5(2):170. CrossRef
  42. Cheung Lam AH, Sandoval N, Wadhwa R, Gilkes J, Do TQ, Ernst W, Chiang SM, Kosina S, Howard Xu H, Fujii G, Porter E. Assessment of free fatty acids and cholesteryl esters delivered in liposomes as novel class of antibiotic. BMC Res Notes. 2016;9:337. PubMed, PubMedCentral, CrossRef
  43. Rogalsky SP, Tarasyuk OP, Dzhuzha OV, Hodyna DM, Cherniavska TV, Hubina AV, Filonenko MM, Metelytsia LO. Evaluation of N,N-dibutyloleamide as a bifunctional additive for poly(vinyl chloride). Colloid Polym Sci. 2022;300(12):1405-1412. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.