Ukr.Biochem.J. 2017; Том 89, № 3, травень-червень, c. 36-45

doi: https://doi.org/10.15407/ubj89.03.036

Корвітин поновлює рівень металотіонеїну і гліального фібрилярного кислого протеїну в мозку щурів в умовах впливу пітуїтрин-ізадрину

О. Н. Шийнтум1, О. О. Довбань1, Ю. П. Ковальчук1, Т. Я. Ярошенко2, Г. О. Ушакова1

1Дніпровський національний університет імені Олеся Гончара, Україна;
2ДВНЗ «Тернопільський державний медичний університет імені І. Я. Горбачевського МОЗ України»;
e-mail: hnkafor@yahoo.com

Досліджено вплив пітуїтрин-ізадрин індукованого  пошкодження на вміст металотіонеїну (MT), розчинної та філаментної форм гліального фібрилярного кислого протеїну (ГФКП) в гіпокампі, мозочку, таламусі й корі головного мозку щурів, спричиненого системним ефектом пітуїтрину та ізадрину, а також вплив корвітину на мозок за зазначених пошко­джень. Одержані результати показали протилежно спрямовані зміни у мозку щурів: зниження рівня МТ і підвищення ГФКП з тенденцією до розвитку астрогліозу під впливом системних ушкоджень функції міокарда. Застосування корвітину в дозі 42 мг/кг протягом п’яти днів після серцевої атаки, спричиненої пітуїтрин-ізадрином, призводить до відновлення балансу досліджуваних протеїнів.

Ключові слова: , , , , ,


Посилання:

  1. Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD, Barres BA, Rowitch DH. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev. 2012 May 1;26(9):891-907. Review.  PubMed, PubMedCentral, CrossRef
  2. Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC, Nodin C, Ståhlberg A, Aprico K, Larsson K, Yabe T, Moons L, Fotheringham A, Davies I, Carmeliet P, Schwartz JP, Pekna M, Kubista M, Blomstrand F, Maragakis N, Nilsson M, Pekny M. Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab. 2008 Mar;28(3):468-81. PubMed
  3. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229-317. Review. PubMed, PubMedCentral, CrossRef
  4. Nedergaard M, Dirnagl U. Role of glial cells in cerebral ischemia. Glia. 2005 Jun;50(4):281-6. Review. PubMed, CrossRef
  5. Margoshes M,  Vallee BL. A cadmium protein from equine kidney cortex. J Am Chem Soc. 1957;79(17):4813-4814. CrossRef
  6. Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol. 2016 Sep;144:103-20. Review. PubMed, PubMedCentral, CrossRef
  7. Briner W. The Alchemist’s approach to metal poisoning: transforming the metal burden. Toxics. 2014; 2(3): 364-376.  CrossRef
  8. Lynes MA, Hidalgo J, Manso Y, Devisscher L, Laukens D, Lawrence DA. Metallothionein and stress combine to affect multiple organ systems. Cell Stress Chaperones. 2014 Sep;19(5):605-11. Review. PubMed, PubMedCentral, CrossRef
  9. Penkowa M, Espejo C, Martínez-Cáceres EM, Poulsen CB, Montalban X, Hidalgo J. Altered inflammatory response and increased neurodegeneration in metallothionein I+II deficient mice during experimental autoimmune encephalomyelitis. J Neuroimmunol. 2001 Oct 1;119(2):248-60. PubMed, CrossRef
  10. Cai X, Wang J, Huang X, Fu W, Xia W, Zou M, Wang Y, Wang J, Xu D. Identification and characterization of MT-1X as a novel FHL3-binding partner. PLoS One. 2014 Apr 1;9(4):e93723. PubMed, PubMedCentral, CrossRef
  11. Chung RS, Penkowa M, Dittmann J, King CE, Bartlett C, Asmussen JW, Hidalgo J, Carrasco J, Leung YK, Walker AK, Fung SJ, Dunlop SA, Fitzgerald M, Beazley LD, Chuah MI, Vickers JC, West AK. Redefining the role of metallothionein within the injured brain: extracellular metallothioneins play an important role in the astrocyte-neuron response to injury. J Biol Chem. 2008 May 30;283(22):15349-58. PubMed, PubMedCentral, CrossRef
  12. Shiyntum H. N., Ushakova G. A. Protective. detoxicative function of metallothionein in the rat brain and blood induced by controlled cadmium doses. Vìsn Dnìpropetr Unìv Ser Bìol Med. 2015; 6(2): 103-107.
  13. Eidizadeh A, Khajehalichalehshtari M, Freyer D, Trendelenburg G. Assessment of the Therapeutic Potential of Metallothionein-II Application in Focal Cerebral Ischemia In Vitro and In Vivo. PLoS One. 2015 Dec 14;10(12):e0144035. PubMed, PubMedCentral, CrossRef
  14. Surjawan Y, As’ad S, Ranakusuma TAS, Wijaya A. The different pattern of S100b protein and GFAP concentrations in ischemic stroke. Med J Indonesia. 2013; 22(4): 215-220. CrossRef
  15. Middeldorp J, Hol EM. GFAP in health and disease. Prog Neurobiol. 2011 Mar;93(3):421-43. Review. PubMed, CrossRef
  16. Kovalenko TM, Osadchenko IO, Tsupykov OM, Pivneva TA, Shalamaĭ AS, Moĭbenko OO, Skybo HH. Neuroprotective effect of quercetin during experimental brain ischemia]. Fiziol Zh. 2006;52(5):21-7. (In Ukrainian). PubMed
  17. Pócsai K, Kálmán M. Glial and perivascular structures in the subfornical organ: distinguishing the shell and core. J Histochem Cytochem. 2015 May;63(5):367-83.  PubMed, PubMedCentral, CrossRef
  18. Ikeshima-Kataoka H. Neuroimmunological Implications of AQP4 in Astrocytes. Int J Mol Sci. 2016 Aug 10;17(8). pii: E1306. Review. PubMed, PubMedCentral, CrossRef
  19. Lu H, Cassis LA, Kooi CW, Daugherty A. Structure and functions of angiotensinogen. Hypertens Res. 2016 Jul;39(7):492-500. Review. PubMed, PubMedCentral, CrossRef
  20. Brenner M. Role of GFAP in CNS injuries. Neurosci Lett. 2014 Apr 17;565:7-13.  Review. PubMed, PubMedCentral, CrossRef
  21. Kimura T, Kambe T. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective. Int J Mol Sci. 2016 Mar 4;17(3):336. Review. PubMed, PubMedCentral, CrossRef
  22. West AK, Hidalgo J, Eddins D, Levin ED, Aschner M. Metallothionein in the central nervous system: Roles in protection, regeneration and cognition. Neurotoxicology. 2008 May;29(3):489-503. Review. PubMed, PubMedCentral, CrossRef
  23. Takano T, Oberheim N, Cotrina ML, Nedergaard M. Astrocytes and ischemic injury. Stroke. 2009 Mar;40(3 Suppl):S8-12. Review. PubMed, PubMedCentral, CrossRef
  24. Fomenko OZ, Ushakova GO, Pierzynowski SG. Proteins of astroglia in the rat brain under experimental chronic hepatitis and 2-oxoglutarate effect. Ukr Biokhim Zhurn. 2011 Jan-Feb;83(1):69-76. (In Ukrainian). PubMed
  25. Medical ethics and human rights: the provisions for the use of animals in biomedical experiments. Exp Clin Physiol Biochem. 2003; 22(2):108-109. (In Ukrainian).
  26. Belenichev IF,  Kucherenko LI, Volchik YuA,  Abramov AV,  Bukhtiyarova NV.  Some aspects of cardioprotective activity of new β-adrenoblocker with NO-mimetic effect “Hypertril” on myocardial infarction model. Pharmacol Drug Toxycol. 2014; 40(4-5): 11-16. (In Russian).
  27. Buresh R, Berg K, French J. The effect of resistive exercise rest interval on hormonal response, strength, and hypertrophy with training. J Strength Cond Res. 2009 Jan;23(1):62-71. PubMed, CrossRef
  28. Ngo TT, Lenhoff GM, Yaklich A. ELISA. Moscow: Mir. 1998; P. 444 (In Russian).
  29. Hooper KC, Jrssup DC. The distribution of enzymes destroying oxytocin and vasopressin in human placentae. J Physiol. 1959 Jun 11;146(3):539-49. PubMed, PubMedCentral, CrossRef
  30. Kleinau G, Pratzka J, Nürnberg D, Grüters A, Führer-Sakel D, Krude H, Köhrle J, Schöneberg T, Biebermann H. Differential modulation of Beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists. PLoS One. 2011;6(10):e27073. PubMed, CrossRef
  31. Huang L, Wu ZB, Zhuge Q, Zheng W, Shao B, Wang B, Sun F, Jin K. Glial scar formation occurs in the human brain after ischemic stroke. Int J Med Sci. 2014 Feb 11;11(4):344-8. PubMed, PubMedCentral, CrossRef
  32. Kovalchuk YP, Prischepa IV, Si U, Nedzvetsky VS, Kot YG, Persky EE, Ushakova GA. Distribution of glial fibrillary acidic protein in different parts of the rat brain under cadmium exposure. Ukr Biochem J. 2015 May-Jun;87(3):116-23. PubMed, CrossRef
  33. Kovalenko TN, Ushakova GA, Osadchenko I, Skibo GG, Pierzynowski SG. The neuroprotective effect of 2-oxoglutarate in the experimental ischemia of hippocampus. J Physiol Pharmacol. 2011 Apr;62(2):239-46. PubMed
  34. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal. 2011 Apr 15;14(8):1505-17.  PubMed, PubMedCentral, CrossRef
  35. Brouns R, De Vil B, Cras P, De Surgeloose D, Mariën P, De Deyn PP. Neurobiochemical markers of brain damage in cerebrospinal fluid of acute ischemic stroke patients. Clin Chem. 2010 Mar;56(3):451-8.  PubMed
  36. West AK, Leung JY, Chung RS. Neuroprotection and regeneration by extracellular metallothionein via lipoprotein-receptor-related proteins. J Biol Inorg Chem. 2011 Oct;16(7):1115-22. Review. PubMed, CrossRef
  37. Pashevin DO, Dosenko BIe, Byts’ IuV, Moĭbenko OO. Antiatherogenic characteristics of korvitin: effect on proteasome activity of the aorta, heart, and blood cells. Fiziol Zh. 2009;55(4):50-7. (In Ukrainian). PubMed
  38. Vovkun TV, Ianchuk PI, Shtanova LIa, Vesel’skyi SP, Baranovs’kyi VA. The influence of corvitin on secretory processes and blood flow in the rat gastric mucosa. Fiziol Zh. 2013;59(1):40-6. (In Ukrainian). PubMed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.