Ukr.Biochem.J. 2020; Том 92, № 3, травень-червень, c. 46-57
doi: https://doi.org/10.15407/ubj92.03.046
Ідентифікація ділянки зв’язування крингла 5 плазміногену в α-ланцюзі D-регіона фібрин(оген)у
Л. Г. Капустяненко, Т. В. Гриненко, А. В. Ребрієв,
О. І. Юсова, А. О. Тихомиров
Інcтитут біохімії ім. О. В. Палладіна НАН України, Київ;
e-mail: kapustyanenko@biochem.kiev.ua
Отримано: 17 травня 2020; Затверджено: 30 червня 2020
Взаємодія Glu-плазміногену з фібрином, опосередкована п’ятим кринглом молекули зимогену, є тригером його активації та ініціації фібринолізу, однак, сайт зв’язування крингла 5 на фібрині залишається невизначеним. Метою роботи було ідентифікувати ділянку в D-фрагменті молекули фібрин(оген)у, що містить сайт, комплементарний лізин-зв’язувальному сайту крингла 5. У роботі досліджено взаємодію крингла 5 плазміногену з поліпептидними ланцюгами D-фрагментів фібрину та бромціанових фрагментів FCB-2 та t-NDSK. Показано, що крингл 5 специфічно зв’язується з α- і γ-ланцюгами D-фрагмента та α-ланцюгом FCB-2. Одержано триптичні пептиди α-ланцюга D-фрагмента, які розділено за їх афінністю до іммобілізованого крингла 5, та мас-спектри всіх досліджуваних пептидів. Встановлено, що критичними амінокислотними залишками α-ланцюга D-фрагмента, що забезпечують взаємодію з кринглом 5, є α171Arg та/або α176Lys. Показано, що сайт зв’язування Glu-плазміногену, комплементарний лізин-зв’язувальному сайту крингла 5, міститься в межах послідовності Аα168Ala−183Lys, яка розташована у слабкоструктурованій петлі між двома суперспіральними ділянками α-ланцюга D-регіона молекули фібрин(оген)у.
Ключові слова: α-ланцюг D-фрагмента фібрину, крингл 5, плазміноген, сайти зв’язування, фібрин(оген), фібриноліз
Посилання:
- Lijnen HR. Elements of the fibrinolytic system. Ann N Y Acad Sci. 2001;936(1):226-236. PubMed, CrossRef
- Doolittle RF. Searching for differences between fibrinogen and fibrin that affect the initiation of fibrinolysis. Cardiovasc Hematol Agents Med Chem. 2008;6(3):181-189. PubMed, CrossRef
- Ponting CP, Marshall JM, Cederholm-Williams SA. Plasminogen: a structural review. Blood Coagul Fibrinolysis. 1992;3(5):605-614. PubMed, CrossRef
- Aisina RB, Mukhametova LI. Structure and functions of plasminogen/plasmin system. Bioorg Khim. 2014;40(6):642-657. (In Russian). PubMed, CrossRef
- Miles LA, Parmer RJ. Plasminogen receptors: the first quarter century. Semin Thromb Hemost. 2013;39(4):329-337. PubMed, PubMedCentral, CrossRef
- Tykhomyrov AA, Shram SI, Grinenko TV. The role of angiostatins in diabetic complications. Biochemistry (Moscow) Suppl. Series B Biomed. Chem. 2014; 8(2): 94–107.
- Cockell CS, Marshall JM, Dawson KM, Cederholm-Williams SA, Ponting CP. Evidence that the conformation of unliganded human plasminogen is maintained via an intramolecular interaction between the lysine-binding site of kringle 5 and the N-terminal peptide. Biochem J. 1998;333(Pt 1):99-105. PubMed, PubMedCentral, CrossRef
- Marshall JM, Brown AJ, Ponting CP. Conformational studies of human plasminogen and plasminogen fragments: evidence for a novel third conformation of plasminogen. Biochemistry. 1994;33(12):3599-3606. PubMed, CrossRef
- Law RHP, Abu-Ssaydeh D, Whisstock JC. New insights into the structure and function of the plasminogen/plasmin system. Curr Opin Struct Biol. 2013;23(6):836-841. PubMed, CrossRef
- Miles LA, Castellino FJ, Gong Y. Critical role for conversion of Glu-plasminogen to Lys-plasminogen for optimal stimulation of plasminogen activation on cell surfaces. Trends Cardiovasc Med. 2003;13(1):21-30. PubMed, CrossRef
- Iusova EI, Savchuk ОV, Rybachuk VN. Conversion of Glu-plasminogen to Lys-plasminogen on the surface of platelet cell surface. Coll. sci. articles “Current problems in biochemistry” І Belarusian Biochem. Congr. 2016; 2: 105–111. (In Russian)
- Thorsen S, Müllertz S, Suenson E, Kok P. Sequence of formation of molecular forms of plasminogen and plasmin-inhibitor complexes in рlasma activated by urokinase or tissue-type plasminogen activator. Biochem J. 1984;223(1):179-187. PubMed, PubMedCentral, CrossRef
- Wu HL, Chang BI, Wu DH, Chang LC, Gong CC, Lou KL, Shi GY. Interaction of plasminogen and fibrin in plasminogen activation. J Biol Chem. 1990;265(32):19658-19664. PubMed
- Grinenko TV, Tret’iachenko VG, Kudinov SA, Medved’ LV. Plasminogen-binding centers of molecules of fibrinogen, fibrin and products of their proteolysis. Biokhimiia. 1987; 52(10): 1732-1739. (In Russian). PubMed
- Taran LD, Makogonenko EM. The effect of kringles K1-3, K4 and K5 on lysis of fibrin clots caused by the activation of Glu- and Lys-plasminogen by a tissue activator. Ukr Biokhim Zhurn. 1989;61(4):31-36. (In Russian). PubMed
- Voskuilen M, Vermond A, Veeneman GH, van Boom JH, Klasen EA, Zegers ND, Nieuwenhuizen W. Fibrinogen lysine residue A alpha 157 plays a crucial role in the fibrin-induced acceleration of plasminogen activation, catalyzed by tissue-type plasminogen activator. J Biol Chem. 1987;262(13):5944-5946. PubMed
- Lezhen TI, Kudinov SA, Medved’ LV. Plasminogen-binding site of the thermostable region of fibrinogen fragment D. FEBS Lett. 1986;197(1-2):59-62. PubMed, CrossRef
- Varetska TV. Microgeterogeneity of fibrinogen. Cryofibrinogen. Ukr Biokhim Zhurn. 1960; 32: 13–24.
- Grinenko TV, Rybachuk VN, Iatsenko TA, Kapustianenko LG. Plasminogen activation by tissue-type activator on DD-fragments of fibrin and Factor ХІІІа-cross-linked fibrinogen. Coll. sci. articles “Current problems in biochemistry” І Belarusian Biochem. Congr. 2016; 1: 72–77. (In Russian).
- Pozdnjakova TM, Musjalkovskaja AA, Ugarova TP, Protvin DD, Kotsjuruba VN. On the properties of fibrin monomer prepared from fibrin clot with acetic acid. Thromb Res. 1979;16(1-2):283-288. PubMed, CrossRef
- Haverkate F, Timan G. Protective effect of calcium in the plasmin degradation of fibrinogen and fibrin fragments D. Thromb Res. 1977;10(6):803-812.
PubMed, CrossRef - Lugovskoy EV, Gritsenko PG, Kapustianenko LG, Kolesnikova IN, Chernishov VI, Komisarenko SV. Functional role of Вβ-chain NH2-terminal fragment in fibrin polymerization process. FEBS J. 2007; 274(17): 4540–4549. CrossRef
- Deutsch DG, Mertz ET. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970;170(3962):1095-1096. PubMed, CrossRef
- Kapustianenko LG, Iatsenko TA, Yusova EI, Grinenko TV. Isolation and purification of a kringle 5 from human plasminogen using AH-Sepharose. Biotechnologia Acta. 2014; 7(4): 35–42. CrossRef
- Kapustianenko LG. Polyclonal antibodies against human plasminogen kringle 5. Biotechnologia Acta. 2017; 10(3): 41–49. CrossRef
- Schägger H, Von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987;166(2):368-379. PubMed, CrossRef
- Burnette WN. “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate–polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981;112(2):195-203. PubMed, CrossRef
- Cavins JF, Friedman M. An internal standard for amino acid analyses: S-beta-(4-pyridylethyl)-L-cysteine. Anal Biochem. 1970;35(2):489-493. PubMed, CrossRef
- Strong DD, Watt KWK, Cottrell BA, Doolittle RF. Amino acid sequence studies on the alpha chain of human fibrinogen. Complete sequence of the largest cyanogen bromide fragment. Biochemistry. 1979;18(24):5399-5404. PubMed, CrossRef
- Spraggon G, Everse SJ, Doolittle RF. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature. 1997;389(6650):455-462. PubMed, CrossRef
- Battistel MD, Grishaev A, An SS, Castellino FJ, Llinás M. Solution structure and functional characterization of human plasminogen kringle 5. Biochemistry. 2009;48(43):10208-10219. PubMed, CrossRef
- Grinenko TV, Kapustianenko LG, Yatsenko TA, Yusova OI, Rybachuk VN. Plasminogen fragments K 1-3 and K 5 bind to different sites in fibrin fragment DD. Ukr Biochem J. 2016;88(3):36-45. PubMed, CrossRef
- Nieuwenhuizen W. Fibrin-mediated plasminogen activation. Ann N Y Acad Sci. 2001;936:237-246. PubMed, CrossRef
- Verevka SV, Grinenko TV. Pseudo-functional interactions of plasminogen: molecular mechanisms and pathologic appearance. In: Advances in Medicine and biology. Nova Science Publishers, Inc.Ed: Leon V. Berhardt. 2011; 34: 35–61.
This work is licensed under a Creative Commons Attribution 4.0 International License.







